ETH Price: $2,909.18 (-4.09%)
Gas: 5 Gwei

Transaction Decoder

Block:
16462226 at Jan-22-2023 12:05:11 PM +UTC
Transaction Fee:
0.001226509787193851 ETH $3.57
Gas Used:
77,053 Gas / 15.917742167 Gwei

Emitted Events:

145 Erc20SwapAsset.Transfer( from=[Sender] 0x569cdc5b765ba27076f7c68c3f435267b56f4616, to=[Receiver] SwapTokens, value=9928365814202797163 )
146 Erc20SwapAsset.Approval( owner=[Sender] 0x569cdc5b765ba27076f7c68c3f435267b56f4616, spender=[Receiver] SwapTokens, value=115792089237316195423570985008687907853269984665640564039447655642098926842772 )
147 MultichainToken.Transfer( from=[Receiver] SwapTokens, to=[Sender] 0x569cdc5b765ba27076f7c68c3f435267b56f4616, value=9928365814202797163 )
148 SwapTokens.Swapped( sender=[Sender] 0x569cdc5b765ba27076f7c68c3f435267b56f4616, srcAmount=9928365814202797163, dstAmount=9928365814202797163 )

Account State Difference:

  Address   Before After State Difference Code
0x569cDc5B...7B56F4616
1.847067726657101167 Eth
Nonce: 489
1.845841216869907316 Eth
Nonce: 490
0.001226509787193851
0x65Ef703f...548492df4
(Eden Network: Builder)
4.664820227150430479 Eth4.664935806650430479 Eth0.0001155795
0xf99d58e4...91861b4D6

Execution Trace

SwapTokens.swap( srcAmount=9928365814202797163 ) => ( dstAmount=9928365814202797163 )
  • Erc20SwapAsset.transferFrom( sender=0x569cDc5B765bA27076f7C68c3f435267B56F4616, recipient=0xaed0472b498548B1354925d222B832b99Bb2EC60, amount=9928365814202797163 ) => ( True )
  • MultichainToken.transfer( recipient=0x569cDc5B765bA27076f7C68c3f435267B56F4616, amount=9928365814202797163 ) => ( True )
    File 1 of 3: SwapTokens
    // SPDX-License-Identifier: GPL-3.0-or-later
    
    pragma solidity ^0.8.6;
    
    // helper methods for interacting with ERC20 tokens
    library TransferHelper {
        function safeTransfer(address token, address to, uint value) internal {
            // bytes4(keccak256(bytes('transfer(address,uint256)')));
            (bool success, bytes memory data) = token.call(abi.encodeWithSelector(0xa9059cbb, to, value));
            require(success && (data.length == 0 || abi.decode(data, (bool))), 'TransferHelper: TRANSFER_FAILED');
        }
    
        function safeTransferFrom(address token, address from, address to, uint value) internal {
            // bytes4(keccak256(bytes('transferFrom(address,address,uint256)')));
            (bool success, bytes memory data) = token.call(abi.encodeWithSelector(0x23b872dd, from, to, value));
            require(success && (data.length == 0 || abi.decode(data, (bool))), 'TransferHelper: TRANSFER_FROM_FAILED');
        }
    }
    
    contract SwapTokens {
        address public immutable srcToken;
        address public immutable dstToken;
    
        // eg. if swap rate 1:100 (src:dst), then numeratorOfRate=100, denominatorOfRate=1
        // eg. if swap rate 2:3 (src:dst), then numeratorOfRate=3, denominatorOfRate=2
        uint256 public immutable numeratorOfRate;
        uint256 public immutable denominatorOfRate;
    
        uint256 public latestWithdrawRequestTime;
        uint256 public latestWithdrawRequestAmount;
        uint256 public constant minWithdrawApprovalInterval = 2 days;
    
        address public owner;
        modifier onlyOwner() {
            require(msg.sender == owner, "only owner");
            _;
        }
    
        event Swapped(address indexed sender, uint256 indexed srcAmount, uint256 indexed dstAmount);
    
        constructor(address _srcToken, address _dstToken, uint256 _numeratorOfRate, uint256 _denominatorOfRate) {
            srcToken = _srcToken;
            dstToken = _dstToken;
            numeratorOfRate = _numeratorOfRate;
            denominatorOfRate = _denominatorOfRate;
            owner = msg.sender;
        }
    
        function transferOwnership(address newOwner) external onlyOwner {
            require(newOwner != address(0), "the new owner is the zero address");
            owner = newOwner;
        }
    
        /// @dev swap with `srcAmount` of `srcToken` to get `dstToken`.
        /// Returns swap result of `dstAmount` of `dstToken`.
        /// Requirements:
        ///   - `msg.sender` must have approved at least `srcAmount` `srcToken` to `address(this)`.
        ///   - `address(this)` must have at least `dstAmount` `dstToken`.
        function swap(uint256 srcAmount) external returns (uint256 dstAmount) {
            dstAmount = srcAmount * numeratorOfRate / denominatorOfRate;
            TransferHelper.safeTransferFrom(srcToken, msg.sender, address(this), srcAmount);
            TransferHelper.safeTransfer(dstToken, msg.sender, dstAmount);
            emit Swapped(msg.sender, srcAmount, dstAmount);
            return dstAmount;
        }
    
        function withdrawRequest(uint256 amount) external onlyOwner {
            if (amount > 0) {
                latestWithdrawRequestTime = block.timestamp;
                latestWithdrawRequestAmount = amount;
            } else {
                latestWithdrawRequestTime = 0;
                latestWithdrawRequestAmount = 0;
            }
        }
    
        function withdraw() external onlyOwner {
            require(
                latestWithdrawRequestTime > 0 && latestWithdrawRequestAmount > 0,
                "please do withdraw request firstly"
            );
            require(
                latestWithdrawRequestTime + minWithdrawApprovalInterval < block.timestamp,
                "the minimum withdraw approval interval is not satisfied"
            );
            uint256 amount = latestWithdrawRequestAmount;
            latestWithdrawRequestTime = 0;
            latestWithdrawRequestAmount = 0;
            TransferHelper.safeTransfer(dstToken, msg.sender, amount);
        }
    }

    File 2 of 3: Erc20SwapAsset
    // SPDX-License-Identifier: MIT
    
    // File: @openzeppelin/contracts/GSN/Context.sol
    
    pragma solidity ^0.5.0;
    
    /*
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with GSN meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    contract Context {
        // Empty internal constructor, to prevent people from mistakenly deploying
        // an instance of this contract, which should be used via inheritance.
        constructor () internal { }
        // solhint-disable-previous-line no-empty-blocks
    
        function _msgSender() internal view returns (address payable) {
            return msg.sender;
        }
    
        function _msgData() internal view returns (bytes memory) {
            this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
            return msg.data;
        }
    }
    
    // File: @openzeppelin/contracts/token/ERC20/IERC20.sol
    
    pragma solidity ^0.5.0;
    
    /**
     * @dev Interface of the ERC20 standard as defined in the EIP. Does not include
     * the optional functions; to access them see {ERC20Detailed}.
     */
    interface IERC20 {
        /**
         * @dev Returns the amount of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
    
        /**
         * @dev Returns the amount of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
    
        /**
         * @dev Moves `amount` tokens from the caller's account to `recipient`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transfer(address recipient, uint256 amount) external returns (bool);
    
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through {transferFrom}. This is
         * zero by default.
         *
         * This value changes when {approve} or {transferFrom} are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
    
        /**
         * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * IMPORTANT: Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an {Approval} event.
         */
        function approve(address spender, uint256 amount) external returns (bool);
    
        /**
         * @dev Moves `amount` tokens from `sender` to `recipient` using the
         * allowance mechanism. `amount` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
    
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
    
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
    }
    
    // File: @openzeppelin/contracts/math/SafeMath.sol
    
    pragma solidity ^0.5.0;
    
    /**
     * @dev Wrappers over Solidity's arithmetic operations with added overflow
     * checks.
     *
     * Arithmetic operations in Solidity wrap on overflow. This can easily result
     * in bugs, because programmers usually assume that an overflow raises an
     * error, which is the standard behavior in high level programming languages.
     * `SafeMath` restores this intuition by reverting the transaction when an
     * operation overflows.
     *
     * Using this library instead of the unchecked operations eliminates an entire
     * class of bugs, so it's recommended to use it always.
     */
    library SafeMath {
        /**
         * @dev Returns the addition of two unsigned integers, reverting on
         * overflow.
         *
         * Counterpart to Solidity's `+` operator.
         *
         * Requirements:
         * - Addition cannot overflow.
         */
        function add(uint256 a, uint256 b) internal pure returns (uint256) {
            uint256 c = a + b;
            require(c >= a, "SafeMath: addition overflow");
    
            return c;
        }
    
        /**
         * @dev Returns the subtraction of two unsigned integers, reverting on
         * overflow (when the result is negative).
         *
         * Counterpart to Solidity's `-` operator.
         *
         * Requirements:
         * - Subtraction cannot overflow.
         */
        function sub(uint256 a, uint256 b) internal pure returns (uint256) {
            return sub(a, b, "SafeMath: subtraction overflow");
        }
    
        /**
         * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
         * overflow (when the result is negative).
         *
         * Counterpart to Solidity's `-` operator.
         *
         * Requirements:
         * - Subtraction cannot overflow.
         *
         * _Available since v2.4.0._
         */
        function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            require(b <= a, errorMessage);
            uint256 c = a - b;
    
            return c;
        }
    
        /**
         * @dev Returns the multiplication of two unsigned integers, reverting on
         * overflow.
         *
         * Counterpart to Solidity's `*` operator.
         *
         * Requirements:
         * - Multiplication cannot overflow.
         */
        function mul(uint256 a, uint256 b) internal pure returns (uint256) {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) {
                return 0;
            }
    
            uint256 c = a * b;
            require(c / a == b, "SafeMath: multiplication overflow");
    
            return c;
        }
    
        /**
         * @dev Returns the integer division of two unsigned integers. Reverts on
         * division by zero. The result is rounded towards zero.
         *
         * Counterpart to Solidity's `/` operator. Note: this function uses a
         * `revert` opcode (which leaves remaining gas untouched) while Solidity
         * uses an invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         * - The divisor cannot be zero.
         */
        function div(uint256 a, uint256 b) internal pure returns (uint256) {
            return div(a, b, "SafeMath: division by zero");
        }
    
        /**
         * @dev Returns the integer division of two unsigned integers. Reverts with custom message on
         * division by zero. The result is rounded towards zero.
         *
         * Counterpart to Solidity's `/` operator. Note: this function uses a
         * `revert` opcode (which leaves remaining gas untouched) while Solidity
         * uses an invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         * - The divisor cannot be zero.
         *
         * _Available since v2.4.0._
         */
        function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            // Solidity only automatically asserts when dividing by 0
            require(b > 0, errorMessage);
            uint256 c = a / b;
            // assert(a == b * c + a % b); // There is no case in which this doesn't hold
    
            return c;
        }
    
        /**
         * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
         * Reverts when dividing by zero.
         *
         * Counterpart to Solidity's `%` operator. This function uses a `revert`
         * opcode (which leaves remaining gas untouched) while Solidity uses an
         * invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         * - The divisor cannot be zero.
         */
        function mod(uint256 a, uint256 b) internal pure returns (uint256) {
            return mod(a, b, "SafeMath: modulo by zero");
        }
    
        /**
         * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
         * Reverts with custom message when dividing by zero.
         *
         * Counterpart to Solidity's `%` operator. This function uses a `revert`
         * opcode (which leaves remaining gas untouched) while Solidity uses an
         * invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         * - The divisor cannot be zero.
         *
         * _Available since v2.4.0._
         */
        function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            require(b != 0, errorMessage);
            return a % b;
        }
    }
    
    // File: @openzeppelin/contracts/token/ERC20/ERC20.sol
    
    pragma solidity ^0.5.0;
    
    
    
    
    /**
     * @dev Implementation of the {IERC20} interface.
     *
     * This implementation is agnostic to the way tokens are created. This means
     * that a supply mechanism has to be added in a derived contract using {_mint}.
     * For a generic mechanism see {ERC20Mintable}.
     *
     * TIP: For a detailed writeup see our guide
     * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
     * to implement supply mechanisms].
     *
     * We have followed general OpenZeppelin guidelines: functions revert instead
     * of returning `false` on failure. This behavior is nonetheless conventional
     * and does not conflict with the expectations of ERC20 applications.
     *
     * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
     * This allows applications to reconstruct the allowance for all accounts just
     * by listening to said events. Other implementations of the EIP may not emit
     * these events, as it isn't required by the specification.
     *
     * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
     * functions have been added to mitigate the well-known issues around setting
     * allowances. See {IERC20-approve}.
     */
    contract ERC20 is Context, IERC20 {
        using SafeMath for uint256;
    
        mapping (address => uint256) private _balances;
    
        mapping (address => mapping (address => uint256)) private _allowances;
    
        uint256 private _totalSupply;
    
        /**
         * @dev See {IERC20-totalSupply}.
         */
        function totalSupply() public view returns (uint256) {
            return _totalSupply;
        }
    
        /**
         * @dev See {IERC20-balanceOf}.
         */
        function balanceOf(address account) public view returns (uint256) {
            return _balances[account];
        }
    
        /**
         * @dev See {IERC20-transfer}.
         *
         * Requirements:
         *
         * - `recipient` cannot be the zero address.
         * - the caller must have a balance of at least `amount`.
         */
        function transfer(address recipient, uint256 amount) public returns (bool) {
            _transfer(_msgSender(), recipient, amount);
            return true;
        }
    
        /**
         * @dev See {IERC20-allowance}.
         */
        function allowance(address owner, address spender) public view returns (uint256) {
            return _allowances[owner][spender];
        }
    
        /**
         * @dev See {IERC20-approve}.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function approve(address spender, uint256 amount) public returns (bool) {
            _approve(_msgSender(), spender, amount);
            return true;
        }
    
        /**
         * @dev See {IERC20-transferFrom}.
         *
         * Emits an {Approval} event indicating the updated allowance. This is not
         * required by the EIP. See the note at the beginning of {ERC20};
         *
         * Requirements:
         * - `sender` and `recipient` cannot be the zero address.
         * - `sender` must have a balance of at least `amount`.
         * - the caller must have allowance for `sender`'s tokens of at least
         * `amount`.
         */
        function transferFrom(address sender, address recipient, uint256 amount) public returns (bool) {
            _transfer(sender, recipient, amount);
            _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
            return true;
        }
    
        /**
         * @dev Atomically increases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function increaseAllowance(address spender, uint256 addedValue) public returns (bool) {
            _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
            return true;
        }
    
        /**
         * @dev Atomically decreases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         * - `spender` must have allowance for the caller of at least
         * `subtractedValue`.
         */
        function decreaseAllowance(address spender, uint256 subtractedValue) public returns (bool) {
            _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
            return true;
        }
    
        /**
         * @dev Moves tokens `amount` from `sender` to `recipient`.
         *
         * This is internal function is equivalent to {transfer}, and can be used to
         * e.g. implement automatic token fees, slashing mechanisms, etc.
         *
         * Emits a {Transfer} event.
         *
         * Requirements:
         *
         * - `sender` cannot be the zero address.
         * - `recipient` cannot be the zero address.
         * - `sender` must have a balance of at least `amount`.
         */
        function _transfer(address sender, address recipient, uint256 amount) internal {
            require(sender != address(0), "ERC20: transfer from the zero address");
            require(recipient != address(0), "ERC20: transfer to the zero address");
    
            _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
            _balances[recipient] = _balances[recipient].add(amount);
            emit Transfer(sender, recipient, amount);
        }
    
        /** @dev Creates `amount` tokens and assigns them to `account`, increasing
         * the total supply.
         *
         * Emits a {Transfer} event with `from` set to the zero address.
         *
         * Requirements
         *
         * - `to` cannot be the zero address.
         */
        function _mint(address account, uint256 amount) internal {
            require(account != address(0), "ERC20: mint to the zero address");
    
            _totalSupply = _totalSupply.add(amount);
            _balances[account] = _balances[account].add(amount);
            emit Transfer(address(0), account, amount);
        }
    
        /**
         * @dev Destroys `amount` tokens from `account`, reducing the
         * total supply.
         *
         * Emits a {Transfer} event with `to` set to the zero address.
         *
         * Requirements
         *
         * - `account` cannot be the zero address.
         * - `account` must have at least `amount` tokens.
         */
        function _burn(address account, uint256 amount) internal {
            require(account != address(0), "ERC20: burn from the zero address");
    
            _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
            _totalSupply = _totalSupply.sub(amount);
            emit Transfer(account, address(0), amount);
        }
    
        /**
         * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens.
         *
         * This is internal function is equivalent to `approve`, and can be used to
         * e.g. set automatic allowances for certain subsystems, etc.
         *
         * Emits an {Approval} event.
         *
         * Requirements:
         *
         * - `owner` cannot be the zero address.
         * - `spender` cannot be the zero address.
         */
        function _approve(address owner, address spender, uint256 amount) internal {
            require(owner != address(0), "ERC20: approve from the zero address");
            require(spender != address(0), "ERC20: approve to the zero address");
    
            _allowances[owner][spender] = amount;
            emit Approval(owner, spender, amount);
        }
    
        /**
         * @dev Destroys `amount` tokens from `account`.`amount` is then deducted
         * from the caller's allowance.
         *
         * See {_burn} and {_approve}.
         */
        function _burnFrom(address account, uint256 amount) internal {
            _burn(account, amount);
            _approve(account, _msgSender(), _allowances[account][_msgSender()].sub(amount, "ERC20: burn amount exceeds allowance"));
        }
    }
    
    // File: @openzeppelin/contracts/token/ERC20/ERC20Detailed.sol
    
    pragma solidity ^0.5.0;
    
    
    /**
     * @dev Optional functions from the ERC20 standard.
     */
    contract ERC20Detailed is IERC20 {
        string private _name;
        string private _symbol;
        uint8 private _decimals;
    
        /**
         * @dev Sets the values for `name`, `symbol`, and `decimals`. All three of
         * these values are immutable: they can only be set once during
         * construction.
         */
        constructor (string memory name, string memory symbol, uint8 decimals) public {
            _name = name;
            _symbol = symbol;
            _decimals = decimals;
        }
    
        /**
         * @dev Returns the name of the token.
         */
        function name() public view returns (string memory) {
            return _name;
        }
    
        /**
         * @dev Returns the symbol of the token, usually a shorter version of the
         * name.
         */
        function symbol() public view returns (string memory) {
            return _symbol;
        }
    
        /**
         * @dev Returns the number of decimals used to get its user representation.
         * For example, if `decimals` equals `2`, a balance of `505` tokens should
         * be displayed to a user as `5,05` (`505 / 10 ** 2`).
         *
         * Tokens usually opt for a value of 18, imitating the relationship between
         * Ether and Wei.
         *
         * NOTE: This information is only used for _display_ purposes: it in
         * no way affects any of the arithmetic of the contract, including
         * {IERC20-balanceOf} and {IERC20-transfer}.
         */
        function decimals() public view returns (uint8) {
            return _decimals;
        }
    }
    
    // File: internal/Erc20SwapAsset.sol
    
    pragma solidity ^0.5.0;
    
    
    
    contract Erc20SwapAsset is ERC20, ERC20Detailed {
        event LogChangeDCRMOwner(address indexed oldOwner, address indexed newOwner, uint indexed effectiveHeight);
        event LogSwapin(bytes32 indexed txhash, address indexed account, uint amount);
        event LogSwapout(address indexed account, address indexed bindaddr, uint amount);
    
        address private _oldOwner;
        address private _newOwner;
        uint256 private _newOwnerEffectiveHeight;
    
        modifier onlyOwner() {
            require(msg.sender == owner(), "only owner");
            _;
        }
    
        constructor(string memory name, string memory symbol, uint8 decimals) public ERC20Detailed(name, symbol, decimals) {
            _newOwner = msg.sender;
            _newOwnerEffectiveHeight = block.number;
        }
    
        function owner() public view returns (address) {
            if (block.number >= _newOwnerEffectiveHeight) {
                return _newOwner;
            }
            return _oldOwner;
        }
    
        function changeDCRMOwner(address newOwner) public onlyOwner returns (bool) {
            require(newOwner != address(0), "new owner is the zero address");
            _oldOwner = owner();
            _newOwner = newOwner;
            _newOwnerEffectiveHeight = block.number + 13300;
            emit LogChangeDCRMOwner(_oldOwner, _newOwner, _newOwnerEffectiveHeight);
            return true;
        }
    
        function Swapin(bytes32 txhash, address account, uint256 amount) public onlyOwner returns (bool) {
            _mint(account, amount);
            emit LogSwapin(txhash, account, amount);
            return true;
        }
    
        function Swapout(uint256 amount, address bindaddr) public returns (bool) {
            require(bindaddr != address(0), "bind address is the zero address");
            _burn(_msgSender(), amount);
            emit LogSwapout(_msgSender(), bindaddr, amount);
            return true;
        }
    }

    File 3 of 3: MultichainToken
    // SPDX-License-Identifier: GPL-3.0-or-later
    // Sources flattened with hardhat v2.8.0 https://hardhat.org
    
    // File @openzeppelin/contracts/token/ERC20/[email protected]
    
    // OpenZeppelin Contracts v4.4.1 (token/ERC20/IERC20.sol)
    
    pragma solidity ^0.8.0;
    
    /**
     * @dev Interface of the ERC20 standard as defined in the EIP.
     */
    interface IERC20 {
        /**
         * @dev Returns the amount of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
    
        /**
         * @dev Returns the amount of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
    
        /**
         * @dev Moves `amount` tokens from the caller's account to `recipient`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transfer(address recipient, uint256 amount) external returns (bool);
    
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through {transferFrom}. This is
         * zero by default.
         *
         * This value changes when {approve} or {transferFrom} are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
    
        /**
         * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * IMPORTANT: Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an {Approval} event.
         */
        function approve(address spender, uint256 amount) external returns (bool);
    
        /**
         * @dev Moves `amount` tokens from `sender` to `recipient` using the
         * allowance mechanism. `amount` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(
            address sender,
            address recipient,
            uint256 amount
        ) external returns (bool);
    
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
    
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
    }
    
    
    // File @openzeppelin/contracts/token/ERC20/extensions/[email protected]
    
    // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
    
    pragma solidity ^0.8.0;
    
    /**
     * @dev Interface for the optional metadata functions from the ERC20 standard.
     *
     * _Available since v4.1._
     */
    interface IERC20Metadata is IERC20 {
        /**
         * @dev Returns the name of the token.
         */
        function name() external view returns (string memory);
    
        /**
         * @dev Returns the symbol of the token.
         */
        function symbol() external view returns (string memory);
    
        /**
         * @dev Returns the decimals places of the token.
         */
        function decimals() external view returns (uint8);
    }
    
    
    // File @openzeppelin/contracts/utils/[email protected]
    
    // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
    
    pragma solidity ^0.8.0;
    
    /**
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract Context {
        function _msgSender() internal view virtual returns (address) {
            return msg.sender;
        }
    
        function _msgData() internal view virtual returns (bytes calldata) {
            return msg.data;
        }
    }
    
    
    // File @openzeppelin/contracts/token/ERC20/[email protected]
    
    // OpenZeppelin Contracts v4.4.1 (token/ERC20/ERC20.sol)
    
    pragma solidity ^0.8.0;
    
    
    
    /**
     * @dev Implementation of the {IERC20} interface.
     *
     * This implementation is agnostic to the way tokens are created. This means
     * that a supply mechanism has to be added in a derived contract using {_mint}.
     * For a generic mechanism see {ERC20PresetMinterPauser}.
     *
     * TIP: For a detailed writeup see our guide
     * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
     * to implement supply mechanisms].
     *
     * We have followed general OpenZeppelin Contracts guidelines: functions revert
     * instead returning `false` on failure. This behavior is nonetheless
     * conventional and does not conflict with the expectations of ERC20
     * applications.
     *
     * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
     * This allows applications to reconstruct the allowance for all accounts just
     * by listening to said events. Other implementations of the EIP may not emit
     * these events, as it isn't required by the specification.
     *
     * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
     * functions have been added to mitigate the well-known issues around setting
     * allowances. See {IERC20-approve}.
     */
    contract ERC20 is Context, IERC20, IERC20Metadata {
        mapping(address => uint256) private _balances;
    
        mapping(address => mapping(address => uint256)) private _allowances;
    
        uint256 private _totalSupply;
    
        string private _name;
        string private _symbol;
    
        /**
         * @dev Sets the values for {name} and {symbol}.
         *
         * The default value of {decimals} is 18. To select a different value for
         * {decimals} you should overload it.
         *
         * All two of these values are immutable: they can only be set once during
         * construction.
         */
        constructor(string memory name_, string memory symbol_) {
            _name = name_;
            _symbol = symbol_;
        }
    
        /**
         * @dev Returns the name of the token.
         */
        function name() public view virtual override returns (string memory) {
            return _name;
        }
    
        /**
         * @dev Returns the symbol of the token, usually a shorter version of the
         * name.
         */
        function symbol() public view virtual override returns (string memory) {
            return _symbol;
        }
    
        /**
         * @dev Returns the number of decimals used to get its user representation.
         * For example, if `decimals` equals `2`, a balance of `505` tokens should
         * be displayed to a user as `5.05` (`505 / 10 ** 2`).
         *
         * Tokens usually opt for a value of 18, imitating the relationship between
         * Ether and Wei. This is the value {ERC20} uses, unless this function is
         * overridden;
         *
         * NOTE: This information is only used for _display_ purposes: it in
         * no way affects any of the arithmetic of the contract, including
         * {IERC20-balanceOf} and {IERC20-transfer}.
         */
        function decimals() public view virtual override returns (uint8) {
            return 18;
        }
    
        /**
         * @dev See {IERC20-totalSupply}.
         */
        function totalSupply() public view virtual override returns (uint256) {
            return _totalSupply;
        }
    
        /**
         * @dev See {IERC20-balanceOf}.
         */
        function balanceOf(address account) public view virtual override returns (uint256) {
            return _balances[account];
        }
    
        /**
         * @dev See {IERC20-transfer}.
         *
         * Requirements:
         *
         * - `recipient` cannot be the zero address.
         * - the caller must have a balance of at least `amount`.
         */
        function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
            _transfer(_msgSender(), recipient, amount);
            return true;
        }
    
        /**
         * @dev See {IERC20-allowance}.
         */
        function allowance(address owner, address spender) public view virtual override returns (uint256) {
            return _allowances[owner][spender];
        }
    
        /**
         * @dev See {IERC20-approve}.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function approve(address spender, uint256 amount) public virtual override returns (bool) {
            _approve(_msgSender(), spender, amount);
            return true;
        }
    
        /**
         * @dev See {IERC20-transferFrom}.
         *
         * Emits an {Approval} event indicating the updated allowance. This is not
         * required by the EIP. See the note at the beginning of {ERC20}.
         *
         * Requirements:
         *
         * - `sender` and `recipient` cannot be the zero address.
         * - `sender` must have a balance of at least `amount`.
         * - the caller must have allowance for ``sender``'s tokens of at least
         * `amount`.
         */
        function transferFrom(
            address sender,
            address recipient,
            uint256 amount
        ) public virtual override returns (bool) {
            _transfer(sender, recipient, amount);
    
            uint256 currentAllowance = _allowances[sender][_msgSender()];
            require(currentAllowance >= amount, "ERC20: transfer amount exceeds allowance");
            unchecked {
                _approve(sender, _msgSender(), currentAllowance - amount);
            }
    
            return true;
        }
    
        /**
         * @dev Atomically increases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
            _approve(_msgSender(), spender, _allowances[_msgSender()][spender] + addedValue);
            return true;
        }
    
        /**
         * @dev Atomically decreases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         * - `spender` must have allowance for the caller of at least
         * `subtractedValue`.
         */
        function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
            uint256 currentAllowance = _allowances[_msgSender()][spender];
            require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
            unchecked {
                _approve(_msgSender(), spender, currentAllowance - subtractedValue);
            }
    
            return true;
        }
    
        /**
         * @dev Moves `amount` of tokens from `sender` to `recipient`.
         *
         * This internal function is equivalent to {transfer}, and can be used to
         * e.g. implement automatic token fees, slashing mechanisms, etc.
         *
         * Emits a {Transfer} event.
         *
         * Requirements:
         *
         * - `sender` cannot be the zero address.
         * - `recipient` cannot be the zero address.
         * - `sender` must have a balance of at least `amount`.
         */
        function _transfer(
            address sender,
            address recipient,
            uint256 amount
        ) internal virtual {
            require(sender != address(0), "ERC20: transfer from the zero address");
            require(recipient != address(0), "ERC20: transfer to the zero address");
    
            _beforeTokenTransfer(sender, recipient, amount);
    
            uint256 senderBalance = _balances[sender];
            require(senderBalance >= amount, "ERC20: transfer amount exceeds balance");
            unchecked {
                _balances[sender] = senderBalance - amount;
            }
            _balances[recipient] += amount;
    
            emit Transfer(sender, recipient, amount);
    
            _afterTokenTransfer(sender, recipient, amount);
        }
    
        /** @dev Creates `amount` tokens and assigns them to `account`, increasing
         * the total supply.
         *
         * Emits a {Transfer} event with `from` set to the zero address.
         *
         * Requirements:
         *
         * - `account` cannot be the zero address.
         */
        function _mint(address account, uint256 amount) internal virtual {
            require(account != address(0), "ERC20: mint to the zero address");
    
            _beforeTokenTransfer(address(0), account, amount);
    
            _totalSupply += amount;
            _balances[account] += amount;
            emit Transfer(address(0), account, amount);
    
            _afterTokenTransfer(address(0), account, amount);
        }
    
        /**
         * @dev Destroys `amount` tokens from `account`, reducing the
         * total supply.
         *
         * Emits a {Transfer} event with `to` set to the zero address.
         *
         * Requirements:
         *
         * - `account` cannot be the zero address.
         * - `account` must have at least `amount` tokens.
         */
        function _burn(address account, uint256 amount) internal virtual {
            require(account != address(0), "ERC20: burn from the zero address");
    
            _beforeTokenTransfer(account, address(0), amount);
    
            uint256 accountBalance = _balances[account];
            require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
            unchecked {
                _balances[account] = accountBalance - amount;
            }
            _totalSupply -= amount;
    
            emit Transfer(account, address(0), amount);
    
            _afterTokenTransfer(account, address(0), amount);
        }
    
        /**
         * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
         *
         * This internal function is equivalent to `approve`, and can be used to
         * e.g. set automatic allowances for certain subsystems, etc.
         *
         * Emits an {Approval} event.
         *
         * Requirements:
         *
         * - `owner` cannot be the zero address.
         * - `spender` cannot be the zero address.
         */
        function _approve(
            address owner,
            address spender,
            uint256 amount
        ) internal virtual {
            require(owner != address(0), "ERC20: approve from the zero address");
            require(spender != address(0), "ERC20: approve to the zero address");
    
            _allowances[owner][spender] = amount;
            emit Approval(owner, spender, amount);
        }
    
        /**
         * @dev Hook that is called before any transfer of tokens. This includes
         * minting and burning.
         *
         * Calling conditions:
         *
         * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
         * will be transferred to `to`.
         * - when `from` is zero, `amount` tokens will be minted for `to`.
         * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
         * - `from` and `to` are never both zero.
         *
         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
         */
        function _beforeTokenTransfer(
            address from,
            address to,
            uint256 amount
        ) internal virtual {}
    
        /**
         * @dev Hook that is called after any transfer of tokens. This includes
         * minting and burning.
         *
         * Calling conditions:
         *
         * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
         * has been transferred to `to`.
         * - when `from` is zero, `amount` tokens have been minted for `to`.
         * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
         * - `from` and `to` are never both zero.
         *
         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
         */
        function _afterTokenTransfer(
            address from,
            address to,
            uint256 amount
        ) internal virtual {}
    }
    
    
    // File internal/MultichainToken.sol
    
    pragma solidity ^0.8.6;
    
    contract MultichainToken is ERC20 {
        constructor() ERC20("Multichain", "MULTI") {
            _mint(msg.sender, 1e8 * 10**uint(decimals()));
        }
    }