ETH Price: $3,025.11 (+1.91%)
Gas: 3 Gwei

Transaction Decoder

Block:
19301609 at Feb-25-2024 02:26:47 AM +UTC
Transaction Fee:
0.006524907462517458 ETH $19.74
Gas Used:
220,486 Gas / 29.593296003 Gwei

Emitted Events:

114 BaseRegistrarImplementation.Transfer( from=0xa18f977062cfc413371f301788c46202a500fa4c, to=[Sender] 0x6df93334716c765e2e51125c45f103a001b43ab2, tokenId=6502004962669270696757657882037740459743715767608816411563921373593302367389 )
115 Seaport.OrderFulfilled( orderHash=2EDD03E55C7CBEA525CCDB1BD25A1F92DCDF5B62BB42765A4A6A5267BC8281BC, offerer=0xa18f977062cfc413371f301788c46202a500fa4c, zone=0x004C0050...C00560C00, recipient=[Sender] 0x6df93334716c765e2e51125c45f103a001b43ab2, offer=, consideration= )

Account State Difference:

  Address   Before After State Difference Code
0x00000000...c0aAF14dC
(Seaport 1.5)
0x0000a26b...000fAa719
155.239788767061206196 Eth155.240038767061206196 Eth0.00025
0x57f1887a...Af147eA85
0x6DF93334...001b43aB2
1.169027010674844 Eth
Nonce: 2
1.152502103212326542 Eth
Nonce: 3
0.016524907462517458
(beaverbuild)
12.231032403404958532 Eth12.231602405497774002 Eth0.00057000209281547
0xA18f9770...2A500FA4c 0.026895417369518911 Eth0.036645417369518911 Eth0.00975

Execution Trace

ETH 0.01 BKExchangeRouter.runWithETH( _data=0x446B839100000000000000000000000000000000000000000000000000000000000000600000000000000000000000006DF93334716C765E2E51125C45F103A001B43AB20000000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000004000000000000000000000000000000000000000000000000002386F26FC100000000000000000000000000000000000000000000000000000000000000000060000000000000000000000000000000000000000000000000000000000000062424160D74000000000000000000000000000000000000000000000000000000000000004000000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000002000000000000000000000000000000000000000000000000000000000000000A000000000000000000000000000000000000000000000000000000000000005800000007B02230091A7ED01230072F7006A004D60A8D4E71D599B8104250F00000000000000000000000000006DF93334716C765E2E51125C45F103A001B43AB2000000000000000000000000000000000000000000000000002386F26FC1000000000000000000000000000000000000000000000000000000000000000000A000000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000046000000000000000000000000000000000000000000000000000000000000004C0000000000000000000000000A18F977062CFC413371F301788C46202A500FA4C000000000000000000000000004C00500000AD104D7DBD00E3AE0A5C00560C000000000000000000000000000000000000000000000000000000000000000160000000000000000000000000000000000000000000000000000000000000022000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000065648B470000000000000000000000000000000000000000000000000000000066267E410000000000000000000000000000000000000000000000000000000000000000360C6EBE00000000000000000000000000000000000000004264D23BB4140FF60000007B02230091A7ED01230072F7006A004D60A8D4E71D599B8104250F000000000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000000200000000000000000000000057F1887A8BF19B14FC0DF6FD9B2ACC9AF147EA850E60011FFE4ADF63C8839F833043950670C5412A813402CF121FF4F842027C9D0000000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000022A392C68F60000000000000000000000000000000000000000000000000000022A392C68F6000000000000000000000000000A18F977062CFC413371F301788C46202A500FA4C0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000E35FA931A0000000000000000000000000000000000000000000000000000000E35FA931A0000000000000000000000000000000A26B00C1F0DF003000390027140000FAA719000000000000000000000000000000000000000000000000000000000000004020BC0938D323EF3EA36A84B43C41618E6DB90D6608B7A942CC9ED981EA6B9C5578768A7994FC2FEEE2FDFDAD48D34A3357C4688F21ECCA581A487D65A046B8D30000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 )
  • ETH 0.01 0xf40417b1ef204bb9ab94175019c9f043a81a72a3.446b8391( )
    • 0xc22fdc0bfa813546a6e61f8bc50e6f6ba42f9e8a.STATICCALL( )
    • 0xc22fdc0bfa813546a6e61f8bc50e6f6ba42f9e8a.b1283e77( )
    • ETH 0.01 0x7e5669cb1b8a71f7bda74e091f274b3e7efb0f63.24160d74( )
      • ETH 0.01 Seaport.fulfillAdvancedOrder( [{name:parameters, type:tuple, order:1, indexed:false, value:[{name:offerer, type:address, order:1, indexed:false, value:0xA18f977062cfC413371f301788c46202A500FA4c, valueString:0xA18f977062cfC413371f301788c46202A500FA4c}, {name:zone, type:address, order:2, indexed:false, value:0x004C00500000aD104D7DBd00e3ae0A5C00560C00, valueString:0x004C00500000aD104D7DBd00e3ae0A5C00560C00}, {name:offer, type:tuple[], order:3, indexed:false}, {name:consideration, type:tuple[], order:4, indexed:false}, {name:orderType, type:uint8, order:5, indexed:false, value:0, valueString:0}, {name:startTime, type:uint256, order:6, indexed:false, value:1701088071, valueString:1701088071}, {name:endTime, type:uint256, order:7, indexed:false, value:1713798721, valueString:1713798721}, {name:zoneHash, type:bytes32, order:8, indexed:false, value:0000000000000000000000000000000000000000000000000000000000000000, valueString:0000000000000000000000000000000000000000000000000000000000000000}, {name:salt, type:uint256, order:9, indexed:false, value:24446860302761739304752683030156737591518664810215442929805166868293292920822, valueString:24446860302761739304752683030156737591518664810215442929805166868293292920822}, {name:conduitKey, type:bytes32, order:10, indexed:false, value:0000007B02230091A7ED01230072F7006A004D60A8D4E71D599B8104250F0000, valueString:0000007B02230091A7ED01230072F7006A004D60A8D4E71D599B8104250F0000}, {name:totalOriginalConsiderationItems, type:uint256, order:11, indexed:false, value:2, valueString:2}], valueString:[{name:offerer, type:address, order:1, indexed:false, value:0xA18f977062cfC413371f301788c46202A500FA4c, valueString:0xA18f977062cfC413371f301788c46202A500FA4c}, {name:zone, type:address, order:2, indexed:false, value:0x004C00500000aD104D7DBd00e3ae0A5C00560C00, valueString:0x004C00500000aD104D7DBd00e3ae0A5C00560C00}, {name:offer, type:tuple[], order:3, indexed:false}, {name:consideration, type:tuple[], order:4, indexed:false}, {name:orderType, type:uint8, order:5, indexed:false, value:0, valueString:0}, {name:startTime, type:uint256, order:6, indexed:false, value:1701088071, valueString:1701088071}, {name:endTime, type:uint256, order:7, indexed:false, value:1713798721, valueString:1713798721}, {name:zoneHash, type:bytes32, order:8, indexed:false, value:0000000000000000000000000000000000000000000000000000000000000000, valueString:0000000000000000000000000000000000000000000000000000000000000000}, {name:salt, type:uint256, order:9, indexed:false, value:24446860302761739304752683030156737591518664810215442929805166868293292920822, valueString:24446860302761739304752683030156737591518664810215442929805166868293292920822}, {name:conduitKey, type:bytes32, order:10, indexed:false, value:0000007B02230091A7ED01230072F7006A004D60A8D4E71D599B8104250F0000, valueString:0000007B02230091A7ED01230072F7006A004D60A8D4E71D599B8104250F0000}, {name:totalOriginalConsiderationItems, type:uint256, order:11, indexed:false, value:2, valueString:2}]}, {name:numerator, type:uint120, order:2, indexed:false, value:1, valueString:1}, {name:denominator, type:uint120, order:3, indexed:false, value:1, valueString:1}, {name:signature, type:bytes, order:4, indexed:false, value:0x20BC0938D323EF3EA36A84B43C41618E6DB90D6608B7A942CC9ED981EA6B9C5578768A7994FC2FEEE2FDFDAD48D34A3357C4688F21ECCA581A487D65A046B8D3, valueString:0x20BC0938D323EF3EA36A84B43C41618E6DB90D6608B7A942CC9ED981EA6B9C5578768A7994FC2FEEE2FDFDAD48D34A3357C4688F21ECCA581A487D65A046B8D3}, {name:extraData, type:bytes, order:5, indexed:false, value:0x, valueString:0x}], , fulfillerConduitKey=0000007B02230091A7ED01230072F7006A004D60A8D4E71D599B8104250F0000, recipient=0x6DF93334716c765E2E51125c45f103A001b43aB2 ) => ( fulfilled=True )
        • Null: 0x000...001.0211fe69( )
        • ETH 0.00975 0xa18f977062cfc413371f301788c46202a500fa4c.CALL( )
        • ETH 0.00025 PayableProxy.CALL( )
        • Conduit.execute( transfers= ) => ( transfers= )
          • BaseRegistrarImplementation.transferFrom( from=0xA18f977062cfC413371f301788c46202A500FA4c, to=0x6DF93334716c765E2E51125c45f103A001b43aB2, tokenId=6502004962669270696757657882037740459743715767608816411563921373593302367389 )
            File 1 of 5: BKExchangeRouter
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
            pragma solidity ^0.8.0;
            import "../utils/Context.sol";
            /**
             * @dev Contract module which provides a basic access control mechanism, where
             * there is an account (an owner) that can be granted exclusive access to
             * specific functions.
             *
             * By default, the owner account will be the one that deploys the contract. This
             * can later be changed with {transferOwnership}.
             *
             * This module is used through inheritance. It will make available the modifier
             * `onlyOwner`, which can be applied to your functions to restrict their use to
             * the owner.
             */
            abstract contract Ownable is Context {
                address private _owner;
                event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                /**
                 * @dev Initializes the contract setting the deployer as the initial owner.
                 */
                constructor() {
                    _transferOwnership(_msgSender());
                }
                /**
                 * @dev Throws if called by any account other than the owner.
                 */
                modifier onlyOwner() {
                    _checkOwner();
                    _;
                }
                /**
                 * @dev Returns the address of the current owner.
                 */
                function owner() public view virtual returns (address) {
                    return _owner;
                }
                /**
                 * @dev Throws if the sender is not the owner.
                 */
                function _checkOwner() internal view virtual {
                    require(owner() == _msgSender(), "Ownable: caller is not the owner");
                }
                /**
                 * @dev Leaves the contract without owner. It will not be possible to call
                 * `onlyOwner` functions anymore. Can only be called by the current owner.
                 *
                 * NOTE: Renouncing ownership will leave the contract without an owner,
                 * thereby removing any functionality that is only available to the owner.
                 */
                function renounceOwnership() public virtual onlyOwner {
                    _transferOwnership(address(0));
                }
                /**
                 * @dev Transfers ownership of the contract to a new account (`newOwner`).
                 * Can only be called by the current owner.
                 */
                function transferOwnership(address newOwner) public virtual onlyOwner {
                    require(newOwner != address(0), "Ownable: new owner is the zero address");
                    _transferOwnership(newOwner);
                }
                /**
                 * @dev Transfers ownership of the contract to a new account (`newOwner`).
                 * Internal function without access restriction.
                 */
                function _transferOwnership(address newOwner) internal virtual {
                    address oldOwner = _owner;
                    _owner = newOwner;
                    emit OwnershipTransferred(oldOwner, newOwner);
                }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol)
            pragma solidity ^0.8.0;
            import "../utils/Context.sol";
            /**
             * @dev Contract module which allows children to implement an emergency stop
             * mechanism that can be triggered by an authorized account.
             *
             * This module is used through inheritance. It will make available the
             * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
             * the functions of your contract. Note that they will not be pausable by
             * simply including this module, only once the modifiers are put in place.
             */
            abstract contract Pausable is Context {
                /**
                 * @dev Emitted when the pause is triggered by `account`.
                 */
                event Paused(address account);
                /**
                 * @dev Emitted when the pause is lifted by `account`.
                 */
                event Unpaused(address account);
                bool private _paused;
                /**
                 * @dev Initializes the contract in unpaused state.
                 */
                constructor() {
                    _paused = false;
                }
                /**
                 * @dev Modifier to make a function callable only when the contract is not paused.
                 *
                 * Requirements:
                 *
                 * - The contract must not be paused.
                 */
                modifier whenNotPaused() {
                    _requireNotPaused();
                    _;
                }
                /**
                 * @dev Modifier to make a function callable only when the contract is paused.
                 *
                 * Requirements:
                 *
                 * - The contract must be paused.
                 */
                modifier whenPaused() {
                    _requirePaused();
                    _;
                }
                /**
                 * @dev Returns true if the contract is paused, and false otherwise.
                 */
                function paused() public view virtual returns (bool) {
                    return _paused;
                }
                /**
                 * @dev Throws if the contract is paused.
                 */
                function _requireNotPaused() internal view virtual {
                    require(!paused(), "Pausable: paused");
                }
                /**
                 * @dev Throws if the contract is not paused.
                 */
                function _requirePaused() internal view virtual {
                    require(paused(), "Pausable: not paused");
                }
                /**
                 * @dev Triggers stopped state.
                 *
                 * Requirements:
                 *
                 * - The contract must not be paused.
                 */
                function _pause() internal virtual whenNotPaused {
                    _paused = true;
                    emit Paused(_msgSender());
                }
                /**
                 * @dev Returns to normal state.
                 *
                 * Requirements:
                 *
                 * - The contract must be paused.
                 */
                function _unpause() internal virtual whenPaused {
                    _paused = false;
                    emit Unpaused(_msgSender());
                }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.8.0) (security/ReentrancyGuard.sol)
            pragma solidity ^0.8.0;
            /**
             * @dev Contract module that helps prevent reentrant calls to a function.
             *
             * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
             * available, which can be applied to functions to make sure there are no nested
             * (reentrant) calls to them.
             *
             * Note that because there is a single `nonReentrant` guard, functions marked as
             * `nonReentrant` may not call one another. This can be worked around by making
             * those functions `private`, and then adding `external` `nonReentrant` entry
             * points to them.
             *
             * TIP: If you would like to learn more about reentrancy and alternative ways
             * to protect against it, check out our blog post
             * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
             */
            abstract contract ReentrancyGuard {
                // Booleans are more expensive than uint256 or any type that takes up a full
                // word because each write operation emits an extra SLOAD to first read the
                // slot's contents, replace the bits taken up by the boolean, and then write
                // back. This is the compiler's defense against contract upgrades and
                // pointer aliasing, and it cannot be disabled.
                // The values being non-zero value makes deployment a bit more expensive,
                // but in exchange the refund on every call to nonReentrant will be lower in
                // amount. Since refunds are capped to a percentage of the total
                // transaction's gas, it is best to keep them low in cases like this one, to
                // increase the likelihood of the full refund coming into effect.
                uint256 private constant _NOT_ENTERED = 1;
                uint256 private constant _ENTERED = 2;
                uint256 private _status;
                constructor() {
                    _status = _NOT_ENTERED;
                }
                /**
                 * @dev Prevents a contract from calling itself, directly or indirectly.
                 * Calling a `nonReentrant` function from another `nonReentrant`
                 * function is not supported. It is possible to prevent this from happening
                 * by making the `nonReentrant` function external, and making it call a
                 * `private` function that does the actual work.
                 */
                modifier nonReentrant() {
                    _nonReentrantBefore();
                    _;
                    _nonReentrantAfter();
                }
                function _nonReentrantBefore() private {
                    // On the first call to nonReentrant, _status will be _NOT_ENTERED
                    require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
                    // Any calls to nonReentrant after this point will fail
                    _status = _ENTERED;
                }
                function _nonReentrantAfter() private {
                    // By storing the original value once again, a refund is triggered (see
                    // https://eips.ethereum.org/EIPS/eip-2200)
                    _status = _NOT_ENTERED;
                }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC1155/IERC1155.sol)
            pragma solidity ^0.8.0;
            import "../../utils/introspection/IERC165.sol";
            /**
             * @dev Required interface of an ERC1155 compliant contract, as defined in the
             * https://eips.ethereum.org/EIPS/eip-1155[EIP].
             *
             * _Available since v3.1._
             */
            interface IERC1155 is IERC165 {
                /**
                 * @dev Emitted when `value` tokens of token type `id` are transferred from `from` to `to` by `operator`.
                 */
                event TransferSingle(address indexed operator, address indexed from, address indexed to, uint256 id, uint256 value);
                /**
                 * @dev Equivalent to multiple {TransferSingle} events, where `operator`, `from` and `to` are the same for all
                 * transfers.
                 */
                event TransferBatch(
                    address indexed operator,
                    address indexed from,
                    address indexed to,
                    uint256[] ids,
                    uint256[] values
                );
                /**
                 * @dev Emitted when `account` grants or revokes permission to `operator` to transfer their tokens, according to
                 * `approved`.
                 */
                event ApprovalForAll(address indexed account, address indexed operator, bool approved);
                /**
                 * @dev Emitted when the URI for token type `id` changes to `value`, if it is a non-programmatic URI.
                 *
                 * If an {URI} event was emitted for `id`, the standard
                 * https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[guarantees] that `value` will equal the value
                 * returned by {IERC1155MetadataURI-uri}.
                 */
                event URI(string value, uint256 indexed id);
                /**
                 * @dev Returns the amount of tokens of token type `id` owned by `account`.
                 *
                 * Requirements:
                 *
                 * - `account` cannot be the zero address.
                 */
                function balanceOf(address account, uint256 id) external view returns (uint256);
                /**
                 * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {balanceOf}.
                 *
                 * Requirements:
                 *
                 * - `accounts` and `ids` must have the same length.
                 */
                function balanceOfBatch(address[] calldata accounts, uint256[] calldata ids)
                    external
                    view
                    returns (uint256[] memory);
                /**
                 * @dev Grants or revokes permission to `operator` to transfer the caller's tokens, according to `approved`,
                 *
                 * Emits an {ApprovalForAll} event.
                 *
                 * Requirements:
                 *
                 * - `operator` cannot be the caller.
                 */
                function setApprovalForAll(address operator, bool approved) external;
                /**
                 * @dev Returns true if `operator` is approved to transfer ``account``'s tokens.
                 *
                 * See {setApprovalForAll}.
                 */
                function isApprovedForAll(address account, address operator) external view returns (bool);
                /**
                 * @dev Transfers `amount` tokens of token type `id` from `from` to `to`.
                 *
                 * Emits a {TransferSingle} event.
                 *
                 * Requirements:
                 *
                 * - `to` cannot be the zero address.
                 * - If the caller is not `from`, it must have been approved to spend ``from``'s tokens via {setApprovalForAll}.
                 * - `from` must have a balance of tokens of type `id` of at least `amount`.
                 * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
                 * acceptance magic value.
                 */
                function safeTransferFrom(
                    address from,
                    address to,
                    uint256 id,
                    uint256 amount,
                    bytes calldata data
                ) external;
                /**
                 * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {safeTransferFrom}.
                 *
                 * Emits a {TransferBatch} event.
                 *
                 * Requirements:
                 *
                 * - `ids` and `amounts` must have the same length.
                 * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
                 * acceptance magic value.
                 */
                function safeBatchTransferFrom(
                    address from,
                    address to,
                    uint256[] calldata ids,
                    uint256[] calldata amounts,
                    bytes calldata data
                ) external;
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
            pragma solidity ^0.8.0;
            /**
             * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
             * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
             *
             * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
             * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
             * need to send a transaction, and thus is not required to hold Ether at all.
             */
            interface IERC20Permit {
                /**
                 * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
                 * given ``owner``'s signed approval.
                 *
                 * IMPORTANT: The same issues {IERC20-approve} has related to transaction
                 * ordering also apply here.
                 *
                 * Emits an {Approval} event.
                 *
                 * Requirements:
                 *
                 * - `spender` cannot be the zero address.
                 * - `deadline` must be a timestamp in the future.
                 * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
                 * over the EIP712-formatted function arguments.
                 * - the signature must use ``owner``'s current nonce (see {nonces}).
                 *
                 * For more information on the signature format, see the
                 * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
                 * section].
                 */
                function permit(
                    address owner,
                    address spender,
                    uint256 value,
                    uint256 deadline,
                    uint8 v,
                    bytes32 r,
                    bytes32 s
                ) external;
                /**
                 * @dev Returns the current nonce for `owner`. This value must be
                 * included whenever a signature is generated for {permit}.
                 *
                 * Every successful call to {permit} increases ``owner``'s nonce by one. This
                 * prevents a signature from being used multiple times.
                 */
                function nonces(address owner) external view returns (uint256);
                /**
                 * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
                 */
                // solhint-disable-next-line func-name-mixedcase
                function DOMAIN_SEPARATOR() external view returns (bytes32);
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
            pragma solidity ^0.8.0;
            /**
             * @dev Interface of the ERC20 standard as defined in the EIP.
             */
            interface IERC20 {
                /**
                 * @dev Emitted when `value` tokens are moved from one account (`from`) to
                 * another (`to`).
                 *
                 * Note that `value` may be zero.
                 */
                event Transfer(address indexed from, address indexed to, uint256 value);
                /**
                 * @dev Emitted when the allowance of a `spender` for an `owner` is set by
                 * a call to {approve}. `value` is the new allowance.
                 */
                event Approval(address indexed owner, address indexed spender, uint256 value);
                /**
                 * @dev Returns the amount of tokens in existence.
                 */
                function totalSupply() external view returns (uint256);
                /**
                 * @dev Returns the amount of tokens owned by `account`.
                 */
                function balanceOf(address account) external view returns (uint256);
                /**
                 * @dev Moves `amount` tokens from the caller's account to `to`.
                 *
                 * Returns a boolean value indicating whether the operation succeeded.
                 *
                 * Emits a {Transfer} event.
                 */
                function transfer(address to, uint256 amount) external returns (bool);
                /**
                 * @dev Returns the remaining number of tokens that `spender` will be
                 * allowed to spend on behalf of `owner` through {transferFrom}. This is
                 * zero by default.
                 *
                 * This value changes when {approve} or {transferFrom} are called.
                 */
                function allowance(address owner, address spender) external view returns (uint256);
                /**
                 * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
                 *
                 * Returns a boolean value indicating whether the operation succeeded.
                 *
                 * IMPORTANT: Beware that changing an allowance with this method brings the risk
                 * that someone may use both the old and the new allowance by unfortunate
                 * transaction ordering. One possible solution to mitigate this race
                 * condition is to first reduce the spender's allowance to 0 and set the
                 * desired value afterwards:
                 * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                 *
                 * Emits an {Approval} event.
                 */
                function approve(address spender, uint256 amount) external returns (bool);
                /**
                 * @dev Moves `amount` tokens from `from` to `to` using the
                 * allowance mechanism. `amount` is then deducted from the caller's
                 * allowance.
                 *
                 * Returns a boolean value indicating whether the operation succeeded.
                 *
                 * Emits a {Transfer} event.
                 */
                function transferFrom(
                    address from,
                    address to,
                    uint256 amount
                ) external returns (bool);
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol)
            pragma solidity ^0.8.0;
            import "../IERC20.sol";
            import "../extensions/draft-IERC20Permit.sol";
            import "../../../utils/Address.sol";
            /**
             * @title SafeERC20
             * @dev Wrappers around ERC20 operations that throw on failure (when the token
             * contract returns false). Tokens that return no value (and instead revert or
             * throw on failure) are also supported, non-reverting calls are assumed to be
             * successful.
             * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
             * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
             */
            library SafeERC20 {
                using Address for address;
                function safeTransfer(
                    IERC20 token,
                    address to,
                    uint256 value
                ) internal {
                    _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
                }
                function safeTransferFrom(
                    IERC20 token,
                    address from,
                    address to,
                    uint256 value
                ) internal {
                    _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
                }
                /**
                 * @dev Deprecated. This function has issues similar to the ones found in
                 * {IERC20-approve}, and its usage is discouraged.
                 *
                 * Whenever possible, use {safeIncreaseAllowance} and
                 * {safeDecreaseAllowance} instead.
                 */
                function safeApprove(
                    IERC20 token,
                    address spender,
                    uint256 value
                ) internal {
                    // safeApprove should only be called when setting an initial allowance,
                    // or when resetting it to zero. To increase and decrease it, use
                    // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
                    require(
                        (value == 0) || (token.allowance(address(this), spender) == 0),
                        "SafeERC20: approve from non-zero to non-zero allowance"
                    );
                    _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
                }
                function safeIncreaseAllowance(
                    IERC20 token,
                    address spender,
                    uint256 value
                ) internal {
                    uint256 newAllowance = token.allowance(address(this), spender) + value;
                    _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                }
                function safeDecreaseAllowance(
                    IERC20 token,
                    address spender,
                    uint256 value
                ) internal {
                    unchecked {
                        uint256 oldAllowance = token.allowance(address(this), spender);
                        require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
                        uint256 newAllowance = oldAllowance - value;
                        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                    }
                }
                function safePermit(
                    IERC20Permit token,
                    address owner,
                    address spender,
                    uint256 value,
                    uint256 deadline,
                    uint8 v,
                    bytes32 r,
                    bytes32 s
                ) internal {
                    uint256 nonceBefore = token.nonces(owner);
                    token.permit(owner, spender, value, deadline, v, r, s);
                    uint256 nonceAfter = token.nonces(owner);
                    require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
                }
                /**
                 * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
                 * on the return value: the return value is optional (but if data is returned, it must not be false).
                 * @param token The token targeted by the call.
                 * @param data The call data (encoded using abi.encode or one of its variants).
                 */
                function _callOptionalReturn(IERC20 token, bytes memory data) private {
                    // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                    // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
                    // the target address contains contract code and also asserts for success in the low-level call.
                    bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
                    if (returndata.length > 0) {
                        // Return data is optional
                        require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC721/IERC721.sol)
            pragma solidity ^0.8.0;
            import "../../utils/introspection/IERC165.sol";
            /**
             * @dev Required interface of an ERC721 compliant contract.
             */
            interface IERC721 is IERC165 {
                /**
                 * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
                 */
                event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
                /**
                 * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
                 */
                event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
                /**
                 * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
                 */
                event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
                /**
                 * @dev Returns the number of tokens in ``owner``'s account.
                 */
                function balanceOf(address owner) external view returns (uint256 balance);
                /**
                 * @dev Returns the owner of the `tokenId` token.
                 *
                 * Requirements:
                 *
                 * - `tokenId` must exist.
                 */
                function ownerOf(uint256 tokenId) external view returns (address owner);
                /**
                 * @dev Safely transfers `tokenId` token from `from` to `to`.
                 *
                 * Requirements:
                 *
                 * - `from` cannot be the zero address.
                 * - `to` cannot be the zero address.
                 * - `tokenId` token must exist and be owned by `from`.
                 * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
                 * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
                 *
                 * Emits a {Transfer} event.
                 */
                function safeTransferFrom(
                    address from,
                    address to,
                    uint256 tokenId,
                    bytes calldata data
                ) external;
                /**
                 * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
                 * are aware of the ERC721 protocol to prevent tokens from being forever locked.
                 *
                 * Requirements:
                 *
                 * - `from` cannot be the zero address.
                 * - `to` cannot be the zero address.
                 * - `tokenId` token must exist and be owned by `from`.
                 * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
                 * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
                 *
                 * Emits a {Transfer} event.
                 */
                function safeTransferFrom(
                    address from,
                    address to,
                    uint256 tokenId
                ) external;
                /**
                 * @dev Transfers `tokenId` token from `from` to `to`.
                 *
                 * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
                 * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
                 * understand this adds an external call which potentially creates a reentrancy vulnerability.
                 *
                 * Requirements:
                 *
                 * - `from` cannot be the zero address.
                 * - `to` cannot be the zero address.
                 * - `tokenId` token must be owned by `from`.
                 * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
                 *
                 * Emits a {Transfer} event.
                 */
                function transferFrom(
                    address from,
                    address to,
                    uint256 tokenId
                ) external;
                /**
                 * @dev Gives permission to `to` to transfer `tokenId` token to another account.
                 * The approval is cleared when the token is transferred.
                 *
                 * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
                 *
                 * Requirements:
                 *
                 * - The caller must own the token or be an approved operator.
                 * - `tokenId` must exist.
                 *
                 * Emits an {Approval} event.
                 */
                function approve(address to, uint256 tokenId) external;
                /**
                 * @dev Approve or remove `operator` as an operator for the caller.
                 * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
                 *
                 * Requirements:
                 *
                 * - The `operator` cannot be the caller.
                 *
                 * Emits an {ApprovalForAll} event.
                 */
                function setApprovalForAll(address operator, bool _approved) external;
                /**
                 * @dev Returns the account approved for `tokenId` token.
                 *
                 * Requirements:
                 *
                 * - `tokenId` must exist.
                 */
                function getApproved(uint256 tokenId) external view returns (address operator);
                /**
                 * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
                 *
                 * See {setApprovalForAll}
                 */
                function isApprovedForAll(address owner, address operator) external view returns (bool);
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
            pragma solidity ^0.8.1;
            /**
             * @dev Collection of functions related to the address type
             */
            library Address {
                /**
                 * @dev Returns true if `account` is a contract.
                 *
                 * [IMPORTANT]
                 * ====
                 * It is unsafe to assume that an address for which this function returns
                 * false is an externally-owned account (EOA) and not a contract.
                 *
                 * Among others, `isContract` will return false for the following
                 * types of addresses:
                 *
                 *  - an externally-owned account
                 *  - a contract in construction
                 *  - an address where a contract will be created
                 *  - an address where a contract lived, but was destroyed
                 * ====
                 *
                 * [IMPORTANT]
                 * ====
                 * You shouldn't rely on `isContract` to protect against flash loan attacks!
                 *
                 * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                 * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                 * constructor.
                 * ====
                 */
                function isContract(address account) internal view returns (bool) {
                    // This method relies on extcodesize/address.code.length, which returns 0
                    // for contracts in construction, since the code is only stored at the end
                    // of the constructor execution.
                    return account.code.length > 0;
                }
                /**
                 * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                 * `recipient`, forwarding all available gas and reverting on errors.
                 *
                 * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                 * of certain opcodes, possibly making contracts go over the 2300 gas limit
                 * imposed by `transfer`, making them unable to receive funds via
                 * `transfer`. {sendValue} removes this limitation.
                 *
                 * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                 *
                 * IMPORTANT: because control is transferred to `recipient`, care must be
                 * taken to not create reentrancy vulnerabilities. Consider using
                 * {ReentrancyGuard} or the
                 * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                 */
                function sendValue(address payable recipient, uint256 amount) internal {
                    require(address(this).balance >= amount, "Address: insufficient balance");
                    (bool success, ) = recipient.call{value: amount}("");
                    require(success, "Address: unable to send value, recipient may have reverted");
                }
                /**
                 * @dev Performs a Solidity function call using a low level `call`. A
                 * plain `call` is an unsafe replacement for a function call: use this
                 * function instead.
                 *
                 * If `target` reverts with a revert reason, it is bubbled up by this
                 * function (like regular Solidity function calls).
                 *
                 * Returns the raw returned data. To convert to the expected return value,
                 * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                 *
                 * Requirements:
                 *
                 * - `target` must be a contract.
                 * - calling `target` with `data` must not revert.
                 *
                 * _Available since v3.1._
                 */
                function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                    return functionCallWithValue(target, data, 0, "Address: low-level call failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                 * `errorMessage` as a fallback revert reason when `target` reverts.
                 *
                 * _Available since v3.1._
                 */
                function functionCall(
                    address target,
                    bytes memory data,
                    string memory errorMessage
                ) internal returns (bytes memory) {
                    return functionCallWithValue(target, data, 0, errorMessage);
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                 * but also transferring `value` wei to `target`.
                 *
                 * Requirements:
                 *
                 * - the calling contract must have an ETH balance of at least `value`.
                 * - the called Solidity function must be `payable`.
                 *
                 * _Available since v3.1._
                 */
                function functionCallWithValue(
                    address target,
                    bytes memory data,
                    uint256 value
                ) internal returns (bytes memory) {
                    return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                 * with `errorMessage` as a fallback revert reason when `target` reverts.
                 *
                 * _Available since v3.1._
                 */
                function functionCallWithValue(
                    address target,
                    bytes memory data,
                    uint256 value,
                    string memory errorMessage
                ) internal returns (bytes memory) {
                    require(address(this).balance >= value, "Address: insufficient balance for call");
                    (bool success, bytes memory returndata) = target.call{value: value}(data);
                    return verifyCallResultFromTarget(target, success, returndata, errorMessage);
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                 * but performing a static call.
                 *
                 * _Available since v3.3._
                 */
                function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                    return functionStaticCall(target, data, "Address: low-level static call failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                 * but performing a static call.
                 *
                 * _Available since v3.3._
                 */
                function functionStaticCall(
                    address target,
                    bytes memory data,
                    string memory errorMessage
                ) internal view returns (bytes memory) {
                    (bool success, bytes memory returndata) = target.staticcall(data);
                    return verifyCallResultFromTarget(target, success, returndata, errorMessage);
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                 * but performing a delegate call.
                 *
                 * _Available since v3.4._
                 */
                function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                    return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                 * but performing a delegate call.
                 *
                 * _Available since v3.4._
                 */
                function functionDelegateCall(
                    address target,
                    bytes memory data,
                    string memory errorMessage
                ) internal returns (bytes memory) {
                    (bool success, bytes memory returndata) = target.delegatecall(data);
                    return verifyCallResultFromTarget(target, success, returndata, errorMessage);
                }
                /**
                 * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
                 * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
                 *
                 * _Available since v4.8._
                 */
                function verifyCallResultFromTarget(
                    address target,
                    bool success,
                    bytes memory returndata,
                    string memory errorMessage
                ) internal view returns (bytes memory) {
                    if (success) {
                        if (returndata.length == 0) {
                            // only check isContract if the call was successful and the return data is empty
                            // otherwise we already know that it was a contract
                            require(isContract(target), "Address: call to non-contract");
                        }
                        return returndata;
                    } else {
                        _revert(returndata, errorMessage);
                    }
                }
                /**
                 * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
                 * revert reason or using the provided one.
                 *
                 * _Available since v4.3._
                 */
                function verifyCallResult(
                    bool success,
                    bytes memory returndata,
                    string memory errorMessage
                ) internal pure returns (bytes memory) {
                    if (success) {
                        return returndata;
                    } else {
                        _revert(returndata, errorMessage);
                    }
                }
                function _revert(bytes memory returndata, string memory errorMessage) private pure {
                    // Look for revert reason and bubble it up if present
                    if (returndata.length > 0) {
                        // The easiest way to bubble the revert reason is using memory via assembly
                        /// @solidity memory-safe-assembly
                        assembly {
                            let returndata_size := mload(returndata)
                            revert(add(32, returndata), returndata_size)
                        }
                    } else {
                        revert(errorMessage);
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
            pragma solidity ^0.8.0;
            /**
             * @dev Provides information about the current execution context, including the
             * sender of the transaction and its data. While these are generally available
             * via msg.sender and msg.data, they should not be accessed in such a direct
             * manner, since when dealing with meta-transactions the account sending and
             * paying for execution may not be the actual sender (as far as an application
             * is concerned).
             *
             * This contract is only required for intermediate, library-like contracts.
             */
            abstract contract Context {
                function _msgSender() internal view virtual returns (address) {
                    return msg.sender;
                }
                function _msgData() internal view virtual returns (bytes calldata) {
                    return msg.data;
                }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
            pragma solidity ^0.8.0;
            /**
             * @dev Interface of the ERC165 standard, as defined in the
             * https://eips.ethereum.org/EIPS/eip-165[EIP].
             *
             * Implementers can declare support of contract interfaces, which can then be
             * queried by others ({ERC165Checker}).
             *
             * For an implementation, see {ERC165}.
             */
            interface IERC165 {
                /**
                 * @dev Returns true if this contract implements the interface defined by
                 * `interfaceId`. See the corresponding
                 * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
                 * to learn more about how these ids are created.
                 *
                 * This function call must use less than 30 000 gas.
                 */
                function supportsInterface(bytes4 interfaceId) external view returns (bool);
            }
            // SPDX-License-Identifier: BUSL-1.1
            pragma solidity ^0.8.17;
            import "@openzeppelin/contracts/access/Ownable.sol";
            import "@openzeppelin/contracts/security/Pausable.sol";
            import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
            import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
            import "@openzeppelin/contracts/token/ERC721/IERC721.sol";
            import "@openzeppelin/contracts/token/ERC1155/IERC1155.sol";
            import "./interfaces/IBKErrors.sol";
            import "./interfaces/IBKCommon.sol";
            contract BKCommon is IBKCommon, IBKErrors, Ownable, Pausable, ReentrancyGuard {
                using SafeERC20 for IERC20;
                mapping(address => bool) isOperator;
                event RescueETH(address indexed recipient, uint256 amount);
                event RescueERC20(address indexed asset, address recipient);
                event RescueERC721(address indexed asset, address recipient, uint256[] ids);
                event RescueERC1155(address indexed asset, address recipient, uint256[] ids, uint256[] amounts);
                event SetOperator(address operator, bool isOperator);
                modifier onlyOperator() {
                    require(isOperator[_msgSender()], "Operator: caller is not the operator");
                    _;
                }
                function setOperator(address[] calldata _operators, bool _isOperator) external onlyOwner {
                    for (uint i = 0; i < _operators.length; i++) {
                        isOperator[_operators[i]] = _isOperator;
                        emit SetOperator(_operators[i], _isOperator);
                    }
                }
                function pause() external onlyOperator {
                    _pause();
                }
                function unpause() external onlyOperator {
                    _unpause();
                }
                function rescueERC20(address asset, address recipient) external onlyOperator {
                    IERC20(asset).safeTransfer(
                        recipient,
                        IERC20(asset).balanceOf(address(this))
                    );
                    emit RescueERC20(asset, recipient);
                }
                // Emergency function: In case any ERC721 tokens get stuck in the contract unintentionally
                // Only owner can retrieve the asset balance to a recipient address
                function rescueERC721(address asset, uint256[] calldata ids, address recipient) onlyOperator external {
                    for (uint256 i = 0; i < ids.length; i++) {
                        IERC721(asset).safeTransferFrom(address(this), recipient, ids[i]);
                    }
                    emit RescueERC721(asset, recipient, ids);
                }
                // Emergency function: In case any ERC1155 tokens get stuck in the contract unintentionally
                // Only owner can retrieve the asset balance to a recipient address
                function rescueERC1155(address asset, uint256[] calldata ids, uint256[] calldata amounts, address recipient) onlyOperator external {
                    require(ids.length == amounts.length, "ids and amounts length mismatched");
                    for (uint256 i = 0; i < ids.length; i++) {
                        IERC1155(asset).safeTransferFrom(address(this), recipient, ids[i], amounts[i], "");
                    }
                    emit RescueERC1155(asset, recipient, ids, amounts);
                }
                function rescueETH(address recipient) external onlyOperator {
                    _transferEth(recipient, address(this).balance);
                }
                function _transferEth(address _to, uint256 _amount) internal {
                    bool callStatus;
                    assembly {
                    // Transfer the ETH and store if it succeeded or not.
                        callStatus := call(gas(), _to, _amount, 0, 0, 0, 0)
                    }
                    require(callStatus, "_transferEth: Eth transfer failed");
                    emit RescueETH(_to, _amount);
                }
                /// @dev Revert with arbitrary bytes.
                /// @param data Revert data.
                function _revertWithData(bytes memory data) internal pure {
                    assembly {revert(add(data, 32), mload(data))}
                }
                receive() external payable {}
            }
            // SPDX-License-Identifier: BUSL-1.1
            pragma solidity ^0.8.17;
            import "./BKCommon.sol";
            import "./utils/TransferHelper.sol";
            contract BKExchangeRouter is BKCommon{
                address public immutable BK_EXCHANGE;
                constructor(address bkExchangeAddress, address _owner) {
                    BK_EXCHANGE = bkExchangeAddress;
                    _transferOwnership(_owner);
                }
                function runWithERC20s(address[] calldata _tokenIns, uint256[] calldata _amountIns, bytes calldata _data)
                external
                payable
                whenNotPaused
                nonReentrant
                {
                    require(_tokenIns.length == _amountIns.length, "_tokenIns and _amountIns length mismatched");
                    for (uint256 i = 0; i < _tokenIns.length; i++) {
                        TransferHelper.safeTransferFrom(
                            _tokenIns[i],
                            msg.sender,
                            BK_EXCHANGE,
                            _amountIns[i]
                        );
                    }
                    (bool success, bytes memory resultData) = BK_EXCHANGE.call{
                        value : msg.value
                    }(_data);
                    if (!success) {
                        _revertWithData(resultData);
                    }
                }
                function runWithETH(bytes calldata _data)
                external
                payable
                whenNotPaused
                nonReentrant
                {
                    (bool success, bytes memory resultData) = BK_EXCHANGE.call{
                        value : msg.value
                    }(_data);
                    if (!success) {
                        _revertWithData(resultData);
                    }
                }
            }
            // SPDX-License-Identifier: BUSL-1.1
            pragma solidity ^0.8.17;
            interface IBKCommon {
                function setOperator(address[] calldata _operators, bool _isOperator) external;
                function pause() external;
                function unpause() external;
                function rescueETH(address recipient) external;
                function rescueERC20(address asset, address recipient) external;
                function rescueERC721(address asset, uint256[] calldata ids, address recipient) external;
                function rescueERC1155(address asset, uint256[] calldata ids, uint256[] calldata amounts, address recipient)  external;
            }
            // SPDX-License-Identifier: BUSL-1.1
            pragma solidity ^0.8.17;
            interface IBKErrors {
                error InvalidMsgSig();
                error InsufficientEtherSupplied();
                error FeatureNotExist(bytes4 msgSig);
                error FeatureInActive();
                error InvalidCaller();
                error InvalidSigner();
                error InvalidNonce(bytes32 signMsg);
                error InvalidZeroAddress();
                error InvalidFeeRate(uint256 feeRate);
                error SwapEthBalanceNotEnough();
                error SwapTokenBalanceNotEnough();
                error SwapTokenApproveNotEnough();
                error SwapInsuffenceOutPut();
                error SwapTypeNotAvailable();
                error BurnToMuch();
                error IllegalCallTarget();
                error IllegalApproveTarget();
                error InvalidSwapAddress(address);
            }
            // SPDX-License-Identifier: BUSL-1.1
            pragma solidity ^0.8.17;
            import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
            library TransferHelper {
                using SafeERC20 for IERC20;
                /// @notice Transfers tokens from the targeted address to the given destination
                /// @notice Errors with 'STF' if transfer fails
                /// @param token The contract address of the token to be transferred
                /// @param from The originating address from which the tokens will be transferred
                /// @param to The destination address of the transfer
                /// @param value The amount to be transferred
                function safeTransferFrom(
                    address token,
                    address from,
                    address to,
                    uint256 value
                ) internal {
                    (bool success, bytes memory data) = token.call(
                        abi.encodeWithSelector(
                            IERC20.transferFrom.selector,
                            from,
                            to,
                            value
                        )
                    );
                    require(
                        success && (data.length == 0 || abi.decode(data, (bool))),
                        "STF"
                    );
                }
                /// @notice Transfers tokens from msg.sender to a recipient
                /// @dev Errors with ST if transfer fails
                /// @param token The contract address of the token which will be transferred
                /// @param to The recipient of the transfer
                /// @param value The value of the transfer
                function safeTransfer(
                    address token,
                    address to,
                    uint256 value
                ) internal {
                    (bool success, bytes memory data) = token.call(
                        abi.encodeWithSelector(IERC20.transfer.selector, to, value)
                    );
                    require(
                        success && (data.length == 0 || abi.decode(data, (bool))),
                        "ST"
                    );
                }
                /// @notice Approves the stipulated contract to spend the given allowance in the given token
                /// @dev Errors with 'SA' if transfer fails
                /// @param token The contract address of the token to be approved
                /// @param to The target of the approval
                /// @param value The amount of the given token the target will be allowed to spend
                function safeApprove(
                    address token,
                    address to,
                    uint256 value
                ) internal {
                    (bool success, bytes memory data) = token.call(
                        abi.encodeWithSelector(IERC20.approve.selector, to, value)
                    );
                    require(
                        success && (data.length == 0 || abi.decode(data, (bool))),
                        "SA"
                    );
                }
                /// @notice Transfers ETH to the recipient address
                /// @dev Fails with `STE`
                /// @param to The destination of the transfer
                /// @param value The value to be transferred
                function safeTransferETH(address to, uint256 value) internal {
                   (bool success, ) = to.call{value: value}(new bytes(0));
                    require(success, "STE");
                }
                function approveMax(
                    IERC20 _token,
                    address _spender,
                    uint256 _amount
                ) internal {
                    uint256 allowance = _token.allowance(address(this), address(_spender));
                    if (allowance < _amount) {
                        if (allowance > 0) {
                            _token.safeApprove(address(_spender), 0);
                        }
                        _token.safeApprove(address(_spender), type(uint256).max);
                    }
                }
                function isETH(address _tokenAddress) internal pure returns (bool) {
                    return
                        (_tokenAddress == 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE) ||
                        (_tokenAddress == 0x0000000000000000000000000000000000000000);
                }
            }
            

            File 2 of 5: BaseRegistrarImplementation
            // File: @ensdomains/ens/contracts/ENS.sol
            
            pragma solidity >=0.4.24;
            
            interface ENS {
            
                // Logged when the owner of a node assigns a new owner to a subnode.
                event NewOwner(bytes32 indexed node, bytes32 indexed label, address owner);
            
                // Logged when the owner of a node transfers ownership to a new account.
                event Transfer(bytes32 indexed node, address owner);
            
                // Logged when the resolver for a node changes.
                event NewResolver(bytes32 indexed node, address resolver);
            
                // Logged when the TTL of a node changes
                event NewTTL(bytes32 indexed node, uint64 ttl);
            
                // Logged when an operator is added or removed.
                event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
            
                function setRecord(bytes32 node, address owner, address resolver, uint64 ttl) external;
                function setSubnodeRecord(bytes32 node, bytes32 label, address owner, address resolver, uint64 ttl) external;
                function setSubnodeOwner(bytes32 node, bytes32 label, address owner) external returns(bytes32);
                function setResolver(bytes32 node, address resolver) external;
                function setOwner(bytes32 node, address owner) external;
                function setTTL(bytes32 node, uint64 ttl) external;
                function setApprovalForAll(address operator, bool approved) external;
                function owner(bytes32 node) external view returns (address);
                function resolver(bytes32 node) external view returns (address);
                function ttl(bytes32 node) external view returns (uint64);
                function recordExists(bytes32 node) external view returns (bool);
                function isApprovedForAll(address owner, address operator) external view returns (bool);
            }
            
            // File: openzeppelin-solidity/contracts/introspection/IERC165.sol
            
            pragma solidity ^0.5.0;
            
            /**
             * @title IERC165
             * @dev https://github.com/ethereum/EIPs/blob/master/EIPS/eip-165.md
             */
            interface IERC165 {
                /**
                 * @notice Query if a contract implements an interface
                 * @param interfaceId The interface identifier, as specified in ERC-165
                 * @dev Interface identification is specified in ERC-165. This function
                 * uses less than 30,000 gas.
                 */
                function supportsInterface(bytes4 interfaceId) external view returns (bool);
            }
            
            // File: openzeppelin-solidity/contracts/token/ERC721/IERC721.sol
            
            pragma solidity ^0.5.0;
            
            
            /**
             * @title ERC721 Non-Fungible Token Standard basic interface
             * @dev see https://github.com/ethereum/EIPs/blob/master/EIPS/eip-721.md
             */
            contract IERC721 is IERC165 {
                event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
                event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
                event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
            
                function balanceOf(address owner) public view returns (uint256 balance);
                function ownerOf(uint256 tokenId) public view returns (address owner);
            
                function approve(address to, uint256 tokenId) public;
                function getApproved(uint256 tokenId) public view returns (address operator);
            
                function setApprovalForAll(address operator, bool _approved) public;
                function isApprovedForAll(address owner, address operator) public view returns (bool);
            
                function transferFrom(address from, address to, uint256 tokenId) public;
                function safeTransferFrom(address from, address to, uint256 tokenId) public;
            
                function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory data) public;
            }
            
            // File: openzeppelin-solidity/contracts/token/ERC721/IERC721Receiver.sol
            
            pragma solidity ^0.5.0;
            
            /**
             * @title ERC721 token receiver interface
             * @dev Interface for any contract that wants to support safeTransfers
             * from ERC721 asset contracts.
             */
            contract IERC721Receiver {
                /**
                 * @notice Handle the receipt of an NFT
                 * @dev The ERC721 smart contract calls this function on the recipient
                 * after a `safeTransfer`. This function MUST return the function selector,
                 * otherwise the caller will revert the transaction. The selector to be
                 * returned can be obtained as `this.onERC721Received.selector`. This
                 * function MAY throw to revert and reject the transfer.
                 * Note: the ERC721 contract address is always the message sender.
                 * @param operator The address which called `safeTransferFrom` function
                 * @param from The address which previously owned the token
                 * @param tokenId The NFT identifier which is being transferred
                 * @param data Additional data with no specified format
                 * @return `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`
                 */
                function onERC721Received(address operator, address from, uint256 tokenId, bytes memory data)
                public returns (bytes4);
            }
            
            // File: openzeppelin-solidity/contracts/math/SafeMath.sol
            
            pragma solidity ^0.5.0;
            
            /**
             * @title SafeMath
             * @dev Unsigned math operations with safety checks that revert on error
             */
            library SafeMath {
                /**
                * @dev Multiplies two unsigned integers, reverts on overflow.
                */
                function mul(uint256 a, uint256 b) internal pure returns (uint256) {
                    // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
                    // benefit is lost if 'b' is also tested.
                    // See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522
                    if (a == 0) {
                        return 0;
                    }
            
                    uint256 c = a * b;
                    require(c / a == b);
            
                    return c;
                }
            
                /**
                * @dev Integer division of two unsigned integers truncating the quotient, reverts on division by zero.
                */
                function div(uint256 a, uint256 b) internal pure returns (uint256) {
                    // Solidity only automatically asserts when dividing by 0
                    require(b > 0);
                    uint256 c = a / b;
                    // assert(a == b * c + a % b); // There is no case in which this doesn't hold
            
                    return c;
                }
            
                /**
                * @dev Subtracts two unsigned integers, reverts on overflow (i.e. if subtrahend is greater than minuend).
                */
                function sub(uint256 a, uint256 b) internal pure returns (uint256) {
                    require(b <= a);
                    uint256 c = a - b;
            
                    return c;
                }
            
                /**
                * @dev Adds two unsigned integers, reverts on overflow.
                */
                function add(uint256 a, uint256 b) internal pure returns (uint256) {
                    uint256 c = a + b;
                    require(c >= a);
            
                    return c;
                }
            
                /**
                * @dev Divides two unsigned integers and returns the remainder (unsigned integer modulo),
                * reverts when dividing by zero.
                */
                function mod(uint256 a, uint256 b) internal pure returns (uint256) {
                    require(b != 0);
                    return a % b;
                }
            }
            
            // File: openzeppelin-solidity/contracts/utils/Address.sol
            
            pragma solidity ^0.5.0;
            
            /**
             * Utility library of inline functions on addresses
             */
            library Address {
                /**
                 * Returns whether the target address is a contract
                 * @dev This function will return false if invoked during the constructor of a contract,
                 * as the code is not actually created until after the constructor finishes.
                 * @param account address of the account to check
                 * @return whether the target address is a contract
                 */
                function isContract(address account) internal view returns (bool) {
                    uint256 size;
                    // XXX Currently there is no better way to check if there is a contract in an address
                    // than to check the size of the code at that address.
                    // See https://ethereum.stackexchange.com/a/14016/36603
                    // for more details about how this works.
                    // TODO Check this again before the Serenity release, because all addresses will be
                    // contracts then.
                    // solhint-disable-next-line no-inline-assembly
                    assembly { size := extcodesize(account) }
                    return size > 0;
                }
            }
            
            // File: openzeppelin-solidity/contracts/introspection/ERC165.sol
            
            pragma solidity ^0.5.0;
            
            
            /**
             * @title ERC165
             * @author Matt Condon (@shrugs)
             * @dev Implements ERC165 using a lookup table.
             */
            contract ERC165 is IERC165 {
                bytes4 private constant _INTERFACE_ID_ERC165 = 0x01ffc9a7;
                /**
                 * 0x01ffc9a7 ===
                 *     bytes4(keccak256('supportsInterface(bytes4)'))
                 */
            
                /**
                 * @dev a mapping of interface id to whether or not it's supported
                 */
                mapping(bytes4 => bool) private _supportedInterfaces;
            
                /**
                 * @dev A contract implementing SupportsInterfaceWithLookup
                 * implement ERC165 itself
                 */
                constructor () internal {
                    _registerInterface(_INTERFACE_ID_ERC165);
                }
            
                /**
                 * @dev implement supportsInterface(bytes4) using a lookup table
                 */
                function supportsInterface(bytes4 interfaceId) external view returns (bool) {
                    return _supportedInterfaces[interfaceId];
                }
            
                /**
                 * @dev internal method for registering an interface
                 */
                function _registerInterface(bytes4 interfaceId) internal {
                    require(interfaceId != 0xffffffff);
                    _supportedInterfaces[interfaceId] = true;
                }
            }
            
            // File: openzeppelin-solidity/contracts/token/ERC721/ERC721.sol
            
            pragma solidity ^0.5.0;
            
            
            
            
            
            
            /**
             * @title ERC721 Non-Fungible Token Standard basic implementation
             * @dev see https://github.com/ethereum/EIPs/blob/master/EIPS/eip-721.md
             */
            contract ERC721 is ERC165, IERC721 {
                using SafeMath for uint256;
                using Address for address;
            
                // Equals to `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`
                // which can be also obtained as `IERC721Receiver(0).onERC721Received.selector`
                bytes4 private constant _ERC721_RECEIVED = 0x150b7a02;
            
                // Mapping from token ID to owner
                mapping (uint256 => address) private _tokenOwner;
            
                // Mapping from token ID to approved address
                mapping (uint256 => address) private _tokenApprovals;
            
                // Mapping from owner to number of owned token
                mapping (address => uint256) private _ownedTokensCount;
            
                // Mapping from owner to operator approvals
                mapping (address => mapping (address => bool)) private _operatorApprovals;
            
                bytes4 private constant _INTERFACE_ID_ERC721 = 0x80ac58cd;
                /*
                 * 0x80ac58cd ===
                 *     bytes4(keccak256('balanceOf(address)')) ^
                 *     bytes4(keccak256('ownerOf(uint256)')) ^
                 *     bytes4(keccak256('approve(address,uint256)')) ^
                 *     bytes4(keccak256('getApproved(uint256)')) ^
                 *     bytes4(keccak256('setApprovalForAll(address,bool)')) ^
                 *     bytes4(keccak256('isApprovedForAll(address,address)')) ^
                 *     bytes4(keccak256('transferFrom(address,address,uint256)')) ^
                 *     bytes4(keccak256('safeTransferFrom(address,address,uint256)')) ^
                 *     bytes4(keccak256('safeTransferFrom(address,address,uint256,bytes)'))
                 */
            
                constructor () public {
                    // register the supported interfaces to conform to ERC721 via ERC165
                    _registerInterface(_INTERFACE_ID_ERC721);
                }
            
                /**
                 * @dev Gets the balance of the specified address
                 * @param owner address to query the balance of
                 * @return uint256 representing the amount owned by the passed address
                 */
                function balanceOf(address owner) public view returns (uint256) {
                    require(owner != address(0));
                    return _ownedTokensCount[owner];
                }
            
                /**
                 * @dev Gets the owner of the specified token ID
                 * @param tokenId uint256 ID of the token to query the owner of
                 * @return owner address currently marked as the owner of the given token ID
                 */
                function ownerOf(uint256 tokenId) public view returns (address) {
                    address owner = _tokenOwner[tokenId];
                    require(owner != address(0));
                    return owner;
                }
            
                /**
                 * @dev Approves another address to transfer the given token ID
                 * The zero address indicates there is no approved address.
                 * There can only be one approved address per token at a given time.
                 * Can only be called by the token owner or an approved operator.
                 * @param to address to be approved for the given token ID
                 * @param tokenId uint256 ID of the token to be approved
                 */
                function approve(address to, uint256 tokenId) public {
                    address owner = ownerOf(tokenId);
                    require(to != owner);
                    require(msg.sender == owner || isApprovedForAll(owner, msg.sender));
            
                    _tokenApprovals[tokenId] = to;
                    emit Approval(owner, to, tokenId);
                }
            
                /**
                 * @dev Gets the approved address for a token ID, or zero if no address set
                 * Reverts if the token ID does not exist.
                 * @param tokenId uint256 ID of the token to query the approval of
                 * @return address currently approved for the given token ID
                 */
                function getApproved(uint256 tokenId) public view returns (address) {
                    require(_exists(tokenId));
                    return _tokenApprovals[tokenId];
                }
            
                /**
                 * @dev Sets or unsets the approval of a given operator
                 * An operator is allowed to transfer all tokens of the sender on their behalf
                 * @param to operator address to set the approval
                 * @param approved representing the status of the approval to be set
                 */
                function setApprovalForAll(address to, bool approved) public {
                    require(to != msg.sender);
                    _operatorApprovals[msg.sender][to] = approved;
                    emit ApprovalForAll(msg.sender, to, approved);
                }
            
                /**
                 * @dev Tells whether an operator is approved by a given owner
                 * @param owner owner address which you want to query the approval of
                 * @param operator operator address which you want to query the approval of
                 * @return bool whether the given operator is approved by the given owner
                 */
                function isApprovedForAll(address owner, address operator) public view returns (bool) {
                    return _operatorApprovals[owner][operator];
                }
            
                /**
                 * @dev Transfers the ownership of a given token ID to another address
                 * Usage of this method is discouraged, use `safeTransferFrom` whenever possible
                 * Requires the msg sender to be the owner, approved, or operator
                 * @param from current owner of the token
                 * @param to address to receive the ownership of the given token ID
                 * @param tokenId uint256 ID of the token to be transferred
                */
                function transferFrom(address from, address to, uint256 tokenId) public {
                    require(_isApprovedOrOwner(msg.sender, tokenId));
            
                    _transferFrom(from, to, tokenId);
                }
            
                /**
                 * @dev Safely transfers the ownership of a given token ID to another address
                 * If the target address is a contract, it must implement `onERC721Received`,
                 * which is called upon a safe transfer, and return the magic value
                 * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise,
                 * the transfer is reverted.
                 *
                 * Requires the msg sender to be the owner, approved, or operator
                 * @param from current owner of the token
                 * @param to address to receive the ownership of the given token ID
                 * @param tokenId uint256 ID of the token to be transferred
                */
                function safeTransferFrom(address from, address to, uint256 tokenId) public {
                    safeTransferFrom(from, to, tokenId, "");
                }
            
                /**
                 * @dev Safely transfers the ownership of a given token ID to another address
                 * If the target address is a contract, it must implement `onERC721Received`,
                 * which is called upon a safe transfer, and return the magic value
                 * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise,
                 * the transfer is reverted.
                 * Requires the msg sender to be the owner, approved, or operator
                 * @param from current owner of the token
                 * @param to address to receive the ownership of the given token ID
                 * @param tokenId uint256 ID of the token to be transferred
                 * @param _data bytes data to send along with a safe transfer check
                 */
                function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) public {
                    transferFrom(from, to, tokenId);
                    require(_checkOnERC721Received(from, to, tokenId, _data));
                }
            
                /**
                 * @dev Returns whether the specified token exists
                 * @param tokenId uint256 ID of the token to query the existence of
                 * @return whether the token exists
                 */
                function _exists(uint256 tokenId) internal view returns (bool) {
                    address owner = _tokenOwner[tokenId];
                    return owner != address(0);
                }
            
                /**
                 * @dev Returns whether the given spender can transfer a given token ID
                 * @param spender address of the spender to query
                 * @param tokenId uint256 ID of the token to be transferred
                 * @return bool whether the msg.sender is approved for the given token ID,
                 *    is an operator of the owner, or is the owner of the token
                 */
                function _isApprovedOrOwner(address spender, uint256 tokenId) internal view returns (bool) {
                    address owner = ownerOf(tokenId);
                    return (spender == owner || getApproved(tokenId) == spender || isApprovedForAll(owner, spender));
                }
            
                /**
                 * @dev Internal function to mint a new token
                 * Reverts if the given token ID already exists
                 * @param to The address that will own the minted token
                 * @param tokenId uint256 ID of the token to be minted
                 */
                function _mint(address to, uint256 tokenId) internal {
                    require(to != address(0));
                    require(!_exists(tokenId));
            
                    _tokenOwner[tokenId] = to;
                    _ownedTokensCount[to] = _ownedTokensCount[to].add(1);
            
                    emit Transfer(address(0), to, tokenId);
                }
            
                /**
                 * @dev Internal function to burn a specific token
                 * Reverts if the token does not exist
                 * Deprecated, use _burn(uint256) instead.
                 * @param owner owner of the token to burn
                 * @param tokenId uint256 ID of the token being burned
                 */
                function _burn(address owner, uint256 tokenId) internal {
                    require(ownerOf(tokenId) == owner);
            
                    _clearApproval(tokenId);
            
                    _ownedTokensCount[owner] = _ownedTokensCount[owner].sub(1);
                    _tokenOwner[tokenId] = address(0);
            
                    emit Transfer(owner, address(0), tokenId);
                }
            
                /**
                 * @dev Internal function to burn a specific token
                 * Reverts if the token does not exist
                 * @param tokenId uint256 ID of the token being burned
                 */
                function _burn(uint256 tokenId) internal {
                    _burn(ownerOf(tokenId), tokenId);
                }
            
                /**
                 * @dev Internal function to transfer ownership of a given token ID to another address.
                 * As opposed to transferFrom, this imposes no restrictions on msg.sender.
                 * @param from current owner of the token
                 * @param to address to receive the ownership of the given token ID
                 * @param tokenId uint256 ID of the token to be transferred
                */
                function _transferFrom(address from, address to, uint256 tokenId) internal {
                    require(ownerOf(tokenId) == from);
                    require(to != address(0));
            
                    _clearApproval(tokenId);
            
                    _ownedTokensCount[from] = _ownedTokensCount[from].sub(1);
                    _ownedTokensCount[to] = _ownedTokensCount[to].add(1);
            
                    _tokenOwner[tokenId] = to;
            
                    emit Transfer(from, to, tokenId);
                }
            
                /**
                 * @dev Internal function to invoke `onERC721Received` on a target address
                 * The call is not executed if the target address is not a contract
                 * @param from address representing the previous owner of the given token ID
                 * @param to target address that will receive the tokens
                 * @param tokenId uint256 ID of the token to be transferred
                 * @param _data bytes optional data to send along with the call
                 * @return whether the call correctly returned the expected magic value
                 */
                function _checkOnERC721Received(address from, address to, uint256 tokenId, bytes memory _data)
                    internal returns (bool)
                {
                    if (!to.isContract()) {
                        return true;
                    }
            
                    bytes4 retval = IERC721Receiver(to).onERC721Received(msg.sender, from, tokenId, _data);
                    return (retval == _ERC721_RECEIVED);
                }
            
                /**
                 * @dev Private function to clear current approval of a given token ID
                 * @param tokenId uint256 ID of the token to be transferred
                 */
                function _clearApproval(uint256 tokenId) private {
                    if (_tokenApprovals[tokenId] != address(0)) {
                        _tokenApprovals[tokenId] = address(0);
                    }
                }
            }
            
            // File: openzeppelin-solidity/contracts/ownership/Ownable.sol
            
            pragma solidity ^0.5.0;
            
            /**
             * @title Ownable
             * @dev The Ownable contract has an owner address, and provides basic authorization control
             * functions, this simplifies the implementation of "user permissions".
             */
            contract Ownable {
                address private _owner;
            
                event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
            
                /**
                 * @dev The Ownable constructor sets the original `owner` of the contract to the sender
                 * account.
                 */
                constructor () internal {
                    _owner = msg.sender;
                    emit OwnershipTransferred(address(0), _owner);
                }
            
                /**
                 * @return the address of the owner.
                 */
                function owner() public view returns (address) {
                    return _owner;
                }
            
                /**
                 * @dev Throws if called by any account other than the owner.
                 */
                modifier onlyOwner() {
                    require(isOwner());
                    _;
                }
            
                /**
                 * @return true if `msg.sender` is the owner of the contract.
                 */
                function isOwner() public view returns (bool) {
                    return msg.sender == _owner;
                }
            
                /**
                 * @dev Allows the current owner to relinquish control of the contract.
                 * @notice Renouncing to ownership will leave the contract without an owner.
                 * It will not be possible to call the functions with the `onlyOwner`
                 * modifier anymore.
                 */
                function renounceOwnership() public onlyOwner {
                    emit OwnershipTransferred(_owner, address(0));
                    _owner = address(0);
                }
            
                /**
                 * @dev Allows the current owner to transfer control of the contract to a newOwner.
                 * @param newOwner The address to transfer ownership to.
                 */
                function transferOwnership(address newOwner) public onlyOwner {
                    _transferOwnership(newOwner);
                }
            
                /**
                 * @dev Transfers control of the contract to a newOwner.
                 * @param newOwner The address to transfer ownership to.
                 */
                function _transferOwnership(address newOwner) internal {
                    require(newOwner != address(0));
                    emit OwnershipTransferred(_owner, newOwner);
                    _owner = newOwner;
                }
            }
            
            // File: @ensdomains/ethregistrar/contracts/BaseRegistrar.sol
            
            pragma solidity >=0.4.24;
            
            
            
            
            contract BaseRegistrar is IERC721, Ownable {
                uint constant public GRACE_PERIOD = 90 days;
            
                event ControllerAdded(address indexed controller);
                event ControllerRemoved(address indexed controller);
                event NameMigrated(uint256 indexed id, address indexed owner, uint expires);
                event NameRegistered(uint256 indexed id, address indexed owner, uint expires);
                event NameRenewed(uint256 indexed id, uint expires);
            
                // The ENS registry
                ENS public ens;
            
                // The namehash of the TLD this registrar owns (eg, .eth)
                bytes32 public baseNode;
            
                // A map of addresses that are authorised to register and renew names.
                mapping(address=>bool) public controllers;
            
                // Authorises a controller, who can register and renew domains.
                function addController(address controller) external;
            
                // Revoke controller permission for an address.
                function removeController(address controller) external;
            
                // Set the resolver for the TLD this registrar manages.
                function setResolver(address resolver) external;
            
                // Returns the expiration timestamp of the specified label hash.
                function nameExpires(uint256 id) external view returns(uint);
            
                // Returns true iff the specified name is available for registration.
                function available(uint256 id) public view returns(bool);
            
                /**
                 * @dev Register a name.
                 */
                function register(uint256 id, address owner, uint duration) external returns(uint);
            
                function renew(uint256 id, uint duration) external returns(uint);
            
                /**
                 * @dev Reclaim ownership of a name in ENS, if you own it in the registrar.
                 */
                function reclaim(uint256 id, address owner) external;
            }
            
            // File: @ensdomains/ethregistrar/contracts/BaseRegistrarImplementation.sol
            
            pragma solidity ^0.5.0;
            
            
            
            
            contract BaseRegistrarImplementation is BaseRegistrar, ERC721 {
                // A map of expiry times
                mapping(uint256=>uint) expiries;
            
                bytes4 constant private INTERFACE_META_ID = bytes4(keccak256("supportsInterface(bytes4)"));
                bytes4 constant private ERC721_ID = bytes4(
                    keccak256("balanceOf(address)") ^
                    keccak256("ownerOf(uint256)") ^
                    keccak256("approve(address,uint256)") ^
                    keccak256("getApproved(uint256)") ^
                    keccak256("setApprovalForAll(address,bool)") ^
                    keccak256("isApprovedForAll(address,address)") ^
                    keccak256("transferFrom(address,address,uint256)") ^
                    keccak256("safeTransferFrom(address,address,uint256)") ^
                    keccak256("safeTransferFrom(address,address,uint256,bytes)")
                );
                bytes4 constant private RECLAIM_ID = bytes4(keccak256("reclaim(uint256,address)"));
            
                constructor(ENS _ens, bytes32 _baseNode) public {
                    ens = _ens;
                    baseNode = _baseNode;
                }
            
                modifier live {
                    require(ens.owner(baseNode) == address(this));
                    _;
                }
            
                modifier onlyController {
                    require(controllers[msg.sender]);
                    _;
                }
            
                /**
                 * @dev Gets the owner of the specified token ID. Names become unowned
                 *      when their registration expires.
                 * @param tokenId uint256 ID of the token to query the owner of
                 * @return address currently marked as the owner of the given token ID
                 */
                function ownerOf(uint256 tokenId) public view returns (address) {
                    require(expiries[tokenId] > now);
                    return super.ownerOf(tokenId);
                }
            
                // Authorises a controller, who can register and renew domains.
                function addController(address controller) external onlyOwner {
                    controllers[controller] = true;
                    emit ControllerAdded(controller);
                }
            
                // Revoke controller permission for an address.
                function removeController(address controller) external onlyOwner {
                    controllers[controller] = false;
                    emit ControllerRemoved(controller);
                }
            
                // Set the resolver for the TLD this registrar manages.
                function setResolver(address resolver) external onlyOwner {
                    ens.setResolver(baseNode, resolver);
                }
            
                // Returns the expiration timestamp of the specified id.
                function nameExpires(uint256 id) external view returns(uint) {
                    return expiries[id];
                }
            
                // Returns true iff the specified name is available for registration.
                function available(uint256 id) public view returns(bool) {
                    // Not available if it's registered here or in its grace period.
                    return expiries[id] + GRACE_PERIOD < now;
                }
            
                /**
                 * @dev Register a name.
                 * @param id The token ID (keccak256 of the label).
                 * @param owner The address that should own the registration.
                 * @param duration Duration in seconds for the registration.
                 */
                function register(uint256 id, address owner, uint duration) external returns(uint) {
                  return _register(id, owner, duration, true);
                }
            
                /**
                 * @dev Register a name, without modifying the registry.
                 * @param id The token ID (keccak256 of the label).
                 * @param owner The address that should own the registration.
                 * @param duration Duration in seconds for the registration.
                 */
                function registerOnly(uint256 id, address owner, uint duration) external returns(uint) {
                  return _register(id, owner, duration, false);
                }
            
                function _register(uint256 id, address owner, uint duration, bool updateRegistry) internal live onlyController returns(uint) {
                    require(available(id));
                    require(now + duration + GRACE_PERIOD > now + GRACE_PERIOD); // Prevent future overflow
            
                    expiries[id] = now + duration;
                    if(_exists(id)) {
                        // Name was previously owned, and expired
                        _burn(id);
                    }
                    _mint(owner, id);
                    if(updateRegistry) {
                        ens.setSubnodeOwner(baseNode, bytes32(id), owner);
                    }
            
                    emit NameRegistered(id, owner, now + duration);
            
                    return now + duration;
                }
            
                function renew(uint256 id, uint duration) external live onlyController returns(uint) {
                    require(expiries[id] + GRACE_PERIOD >= now); // Name must be registered here or in grace period
                    require(expiries[id] + duration + GRACE_PERIOD > duration + GRACE_PERIOD); // Prevent future overflow
            
                    expiries[id] += duration;
                    emit NameRenewed(id, expiries[id]);
                    return expiries[id];
                }
            
                /**
                 * @dev Reclaim ownership of a name in ENS, if you own it in the registrar.
                 */
                function reclaim(uint256 id, address owner) external live {
                    require(_isApprovedOrOwner(msg.sender, id));
                    ens.setSubnodeOwner(baseNode, bytes32(id), owner);
                }
            
                function supportsInterface(bytes4 interfaceID) external view returns (bool) {
                    return interfaceID == INTERFACE_META_ID ||
                           interfaceID == ERC721_ID ||
                           interfaceID == RECLAIM_ID;
                }
            }

            File 3 of 5: Seaport
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.17;
            import { Consideration } from "./lib/Consideration.sol";
            /**
             * @title Seaport
             * @custom:version 1.5
             * @author 0age (0age.eth)
             * @custom:coauthor d1ll0n (d1ll0n.eth)
             * @custom:coauthor transmissions11 (t11s.eth)
             * @custom:coauthor James Wenzel (emo.eth)
             * @custom:contributor Kartik (slokh.eth)
             * @custom:contributor LeFevre (lefevre.eth)
             * @custom:contributor Joseph Schiarizzi (CupOJoseph.eth)
             * @custom:contributor Aspyn Palatnick (stuckinaboot.eth)
             * @custom:contributor Stephan Min (stephanm.eth)
             * @custom:contributor Ryan Ghods (ralxz.eth)
             * @custom:contributor Daniel Viau (snotrocket.eth)
             * @custom:contributor hack3r-0m (hack3r-0m.eth)
             * @custom:contributor Diego Estevez (antidiego.eth)
             * @custom:contributor Chomtana (chomtana.eth)
             * @custom:contributor Saw-mon and Natalie (sawmonandnatalie.eth)
             * @custom:contributor 0xBeans (0xBeans.eth)
             * @custom:contributor 0x4non (punkdev.eth)
             * @custom:contributor Laurence E. Day (norsefire.eth)
             * @custom:contributor vectorized.eth (vectorized.eth)
             * @custom:contributor karmacoma (karmacoma.eth)
             * @custom:contributor horsefacts (horsefacts.eth)
             * @custom:contributor UncarvedBlock (uncarvedblock.eth)
             * @custom:contributor Zoraiz Mahmood (zorz.eth)
             * @custom:contributor William Poulin (wpoulin.eth)
             * @custom:contributor Rajiv Patel-O'Connor (rajivpoc.eth)
             * @custom:contributor tserg (tserg.eth)
             * @custom:contributor cygaar (cygaar.eth)
             * @custom:contributor Meta0xNull (meta0xnull.eth)
             * @custom:contributor gpersoon (gpersoon.eth)
             * @custom:contributor Matt Solomon (msolomon.eth)
             * @custom:contributor Weikang Song (weikangs.eth)
             * @custom:contributor zer0dot (zer0dot.eth)
             * @custom:contributor Mudit Gupta (mudit.eth)
             * @custom:contributor leonardoalt (leoalt.eth)
             * @custom:contributor cmichel (cmichel.eth)
             * @custom:contributor PraneshASP (pranesh.eth)
             * @custom:contributor JasperAlexander (jasperalexander.eth)
             * @custom:contributor Ellahi (ellahi.eth)
             * @custom:contributor zaz (1zaz1.eth)
             * @custom:contributor berndartmueller (berndartmueller.eth)
             * @custom:contributor dmfxyz (dmfxyz.eth)
             * @custom:contributor daltoncoder (dontkillrobots.eth)
             * @custom:contributor 0xf4ce (0xf4ce.eth)
             * @custom:contributor phaze (phaze.eth)
             * @custom:contributor hrkrshnn (hrkrshnn.eth)
             * @custom:contributor axic (axic.eth)
             * @custom:contributor leastwood (leastwood.eth)
             * @custom:contributor 0xsanson (sanson.eth)
             * @custom:contributor blockdev (blockd3v.eth)
             * @custom:contributor fiveoutofnine (fiveoutofnine.eth)
             * @custom:contributor shuklaayush (shuklaayush.eth)
             * @custom:contributor dravee (dravee.eth)
             * @custom:contributor 0xPatissier
             * @custom:contributor pcaversaccio
             * @custom:contributor David Eiber
             * @custom:contributor csanuragjain
             * @custom:contributor sach1r0
             * @custom:contributor twojoy0
             * @custom:contributor ori_dabush
             * @custom:contributor Daniel Gelfand
             * @custom:contributor okkothejawa
             * @custom:contributor FlameHorizon
             * @custom:contributor vdrg
             * @custom:contributor dmitriia
             * @custom:contributor bokeh-eth
             * @custom:contributor asutorufos
             * @custom:contributor rfart(rfa)
             * @custom:contributor Riley Holterhus
             * @custom:contributor big-tech-sux
             * @notice Seaport is a generalized native token/ERC20/ERC721/ERC1155
             *         marketplace with lightweight methods for common routes as well as
             *         more flexible methods for composing advanced orders or groups of
             *         orders. Each order contains an arbitrary number of items that may be
             *         spent (the "offer") along with an arbitrary number of items that must
             *         be received back by the indicated recipients (the "consideration").
             */
            contract Seaport is Consideration {
                /**
                 * @notice Derive and set hashes, reference chainId, and associated domain
                 *         separator during deployment.
                 *
                 * @param conduitController A contract that deploys conduits, or proxies
                 *                          that may optionally be used to transfer approved
                 *                          ERC20/721/1155 tokens.
                 */
                constructor(address conduitController) Consideration(conduitController) {}
                /**
                 * @dev Internal pure function to retrieve and return the name of this
                 *      contract.
                 *
                 * @return The name of this contract.
                 */
                function _name() internal pure override returns (string memory) {
                    // Return the name of the contract.
                    assembly {
                        mstore(0x20, 0x20)
                        mstore(0x47, 0x07536561706f7274)
                        return(0x20, 0x60)
                    }
                }
                /**
                 * @dev Internal pure function to retrieve the name of this contract as a
                 *      string that will be used to derive the name hash in the constructor.
                 *
                 * @return The name of this contract as a string.
                 */
                function _nameString() internal pure override returns (string memory) {
                    // Return the name of the contract.
                    return "Seaport";
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.17;
            import {
                ConsiderationInterface
            } from "../interfaces/ConsiderationInterface.sol";
            import {
                AdvancedOrder,
                BasicOrderParameters,
                CriteriaResolver,
                Execution,
                Fulfillment,
                FulfillmentComponent,
                Order,
                OrderComponents
            } from "./ConsiderationStructs.sol";
            import { OrderCombiner } from "./OrderCombiner.sol";
            import {
                CalldataStart,
                CalldataPointer
            } from "../helpers/PointerLibraries.sol";
            import {
                Offset_fulfillAdvancedOrder_criteriaResolvers,
                Offset_fulfillAvailableAdvancedOrders_cnsdrationFlflmnts,
                Offset_fulfillAvailableAdvancedOrders_criteriaResolvers,
                Offset_fulfillAvailableAdvancedOrders_offerFulfillments,
                Offset_fulfillAvailableOrders_considerationFulfillments,
                Offset_fulfillAvailableOrders_offerFulfillments,
                Offset_matchAdvancedOrders_criteriaResolvers,
                Offset_matchAdvancedOrders_fulfillments,
                Offset_matchOrders_fulfillments,
                OrderParameters_counter_offset
            } from "./ConsiderationConstants.sol";
            /**
             * @title Consideration
             * @author 0age (0age.eth)
             * @custom:coauthor d1ll0n (d1ll0n.eth)
             * @custom:coauthor transmissions11 (t11s.eth)
             * @custom:coauthor James Wenzel (emo.eth)
             * @custom:version 1.5
             * @notice Consideration is a generalized native token/ERC20/ERC721/ERC1155
             *         marketplace that provides lightweight methods for common routes as
             *         well as more flexible methods for composing advanced orders or groups
             *         of orders. Each order contains an arbitrary number of items that may
             *         be spent (the "offer") along with an arbitrary number of items that
             *         must be received back by the indicated recipients (the
             *         "consideration").
             */
            contract Consideration is ConsiderationInterface, OrderCombiner {
                /**
                 * @notice Derive and set hashes, reference chainId, and associated domain
                 *         separator during deployment.
                 *
                 * @param conduitController A contract that deploys conduits, or proxies
                 *                          that may optionally be used to transfer approved
                 *                          ERC20/721/1155 tokens.
                 */
                constructor(address conduitController) OrderCombiner(conduitController) {}
                /**
                 * @notice Accept native token transfers during execution that may then be
                 *         used to facilitate native token transfers, where any tokens that
                 *         remain will be transferred to the caller. Native tokens are only
                 *         acceptable mid-fulfillment (and not during basic fulfillment).
                 */
                receive() external payable {
                    // Ensure the reentrancy guard is currently set to accept native tokens.
                    _assertAcceptingNativeTokens();
                }
                /**
                 * @notice Fulfill an order offering an ERC20, ERC721, or ERC1155 item by
                 *         supplying Ether (or other native tokens), ERC20 tokens, an ERC721
                 *         item, or an ERC1155 item as consideration. Six permutations are
                 *         supported: Native token to ERC721, Native token to ERC1155, ERC20
                 *         to ERC721, ERC20 to ERC1155, ERC721 to ERC20, and ERC1155 to
                 *         ERC20 (with native tokens supplied as msg.value). For an order to
                 *         be eligible for fulfillment via this method, it must contain a
                 *         single offer item (though that item may have a greater amount if
                 *         the item is not an ERC721). An arbitrary number of "additional
                 *         recipients" may also be supplied which will each receive native
                 *         tokens or ERC20 items from the fulfiller as consideration. Refer
                 *         to the documentation for a more comprehensive summary of how to
                 *         utilize this method and what orders are compatible with it.
                 *
                 * @param parameters Additional information on the fulfilled order. Note
                 *                   that the offerer and the fulfiller must first approve
                 *                   this contract (or their chosen conduit if indicated)
                 *                   before any tokens can be transferred. Also note that
                 *                   contract recipients of ERC1155 consideration items must
                 *                   implement `onERC1155Received` to receive those items.
                 *
                 * @return fulfilled A boolean indicating whether the order has been
                 *                   successfully fulfilled.
                 */
                function fulfillBasicOrder(
                    BasicOrderParameters calldata parameters
                ) external payable override returns (bool fulfilled) {
                    // Validate and fulfill the basic order.
                    fulfilled = _validateAndFulfillBasicOrder(parameters);
                }
                /**
                 * @notice Fulfill an order offering an ERC20, ERC721, or ERC1155 item by
                 *         supplying Ether (or other native tokens), ERC20 tokens, an ERC721
                 *         item, or an ERC1155 item as consideration. Six permutations are
                 *         supported: Native token to ERC721, Native token to ERC1155, ERC20
                 *         to ERC721, ERC20 to ERC1155, ERC721 to ERC20, and ERC1155 to
                 *         ERC20 (with native tokens supplied as msg.value). For an order to
                 *         be eligible for fulfillment via this method, it must contain a
                 *         single offer item (though that item may have a greater amount if
                 *         the item is not an ERC721). An arbitrary number of "additional
                 *         recipients" may also be supplied which will each receive native
                 *         tokens or ERC20 items from the fulfiller as consideration. Refer
                 *         to the documentation for a more comprehensive summary of how to
                 *         utilize this method and what orders are compatible with it. Note
                 *         that this function costs less gas than `fulfillBasicOrder` due to
                 *         the zero bytes in the function selector (0x00000000) which also
                 *         results in earlier function dispatch.
                 *
                 * @param parameters Additional information on the fulfilled order. Note
                 *                   that the offerer and the fulfiller must first approve
                 *                   this contract (or their chosen conduit if indicated)
                 *                   before any tokens can be transferred. Also note that
                 *                   contract recipients of ERC1155 consideration items must
                 *                   implement `onERC1155Received` to receive those items.
                 *
                 * @return fulfilled A boolean indicating whether the order has been
                 *                   successfully fulfilled.
                 */
                function fulfillBasicOrder_efficient_6GL6yc(
                    BasicOrderParameters calldata parameters
                ) external payable override returns (bool fulfilled) {
                    // Validate and fulfill the basic order.
                    fulfilled = _validateAndFulfillBasicOrder(parameters);
                }
                /**
                 * @notice Fulfill an order with an arbitrary number of items for offer and
                 *         consideration. Note that this function does not support
                 *         criteria-based orders or partial filling of orders (though
                 *         filling the remainder of a partially-filled order is supported).
                 *
                 * @custom:param order        The order to fulfill. Note that both the
                 *                            offerer and the fulfiller must first approve
                 *                            this contract (or the corresponding conduit if
                 *                            indicated) to transfer any relevant tokens on
                 *                            their behalf and that contracts must implement
                 *                            `onERC1155Received` to receive ERC1155 tokens
                 *                            as consideration.
                 * @param fulfillerConduitKey A bytes32 value indicating what conduit, if
                 *                            any, to source the fulfiller's token approvals
                 *                            from. The zero hash signifies that no conduit
                 *                            should be used (and direct approvals set on
                 *                            this contract).
                 *
                 * @return fulfilled A boolean indicating whether the order has been
                 *                   successfully fulfilled.
                 */
                function fulfillOrder(
                    /**
                     * @custom:name order
                     */
                    Order calldata,
                    bytes32 fulfillerConduitKey
                ) external payable override returns (bool fulfilled) {
                    // Convert order to "advanced" order, then validate and fulfill it.
                    fulfilled = _validateAndFulfillAdvancedOrder(
                        _toAdvancedOrderReturnType(_decodeOrderAsAdvancedOrder)(
                            CalldataStart.pptr()
                        ),
                        new CriteriaResolver[](0), // No criteria resolvers supplied.
                        fulfillerConduitKey,
                        msg.sender
                    );
                }
                /**
                 * @notice Fill an order, fully or partially, with an arbitrary number of
                 *         items for offer and consideration alongside criteria resolvers
                 *         containing specific token identifiers and associated proofs.
                 *
                 * @custom:param advancedOrder     The order to fulfill along with the
                 *                                 fraction of the order to attempt to fill.
                 *                                 Note that both the offerer and the
                 *                                 fulfiller must first approve this
                 *                                 contract (or their conduit if indicated
                 *                                 by the order) to transfer any relevant
                 *                                 tokens on their behalf and that contracts
                 *                                 must implement `onERC1155Received` to
                 *                                 receive ERC1155 tokens as consideration.
                 *                                 Also note that all offer and
                 *                                 consideration components must have no
                 *                                 remainder after multiplication of the
                 *                                 respective amount with the supplied
                 *                                 fraction for the partial fill to be
                 *                                 considered valid.
                 * @custom:param criteriaResolvers An array where each element contains a
                 *                                 reference to a specific offer or
                 *                                 consideration, a token identifier, and a
                 *                                 proof that the supplied token identifier
                 *                                 is contained in the merkle root held by
                 *                                 the item in question's criteria element.
                 *                                 Note that an empty criteria indicates
                 *                                 that any (transferable) token identifier
                 *                                 on the token in question is valid and
                 *                                 that no associated proof needs to be
                 *                                 supplied.
                 * @param fulfillerConduitKey      A bytes32 value indicating what conduit,
                 *                                 if any, to source the fulfiller's token
                 *                                 approvals from. The zero hash signifies
                 *                                 that no conduit should be used (and
                 *                                 direct approvals set on this contract).
                 * @param recipient                The intended recipient for all received
                 *                                 items, with `address(0)` indicating that
                 *                                 the caller should receive the items.
                 *
                 * @return fulfilled A boolean indicating whether the order has been
                 *                   successfully fulfilled.
                 */
                function fulfillAdvancedOrder(
                    /**
                     * @custom:name advancedOrder
                     */
                    AdvancedOrder calldata,
                    /**
                     * @custom:name criteriaResolvers
                     */
                    CriteriaResolver[] calldata,
                    bytes32 fulfillerConduitKey,
                    address recipient
                ) external payable override returns (bool fulfilled) {
                    // Validate and fulfill the order.
                    fulfilled = _validateAndFulfillAdvancedOrder(
                        _toAdvancedOrderReturnType(_decodeAdvancedOrder)(
                            CalldataStart.pptr()
                        ),
                        _toCriteriaResolversReturnType(_decodeCriteriaResolvers)(
                            CalldataStart.pptr(
                                Offset_fulfillAdvancedOrder_criteriaResolvers
                            )
                        ),
                        fulfillerConduitKey,
                        _substituteCallerForEmptyRecipient(recipient)
                    );
                }
                /**
                 * @notice Attempt to fill a group of orders, each with an arbitrary number
                 *         of items for offer and consideration. Any order that is not
                 *         currently active, has already been fully filled, or has been
                 *         cancelled will be omitted. Remaining offer and consideration
                 *         items will then be aggregated where possible as indicated by the
                 *         supplied offer and consideration component arrays and aggregated
                 *         items will be transferred to the fulfiller or to each intended
                 *         recipient, respectively. Note that a failing item transfer or an
                 *         issue with order formatting will cause the entire batch to fail.
                 *         Note that this function does not support criteria-based orders or
                 *         partial filling of orders (though filling the remainder of a
                 *         partially-filled order is supported).
                 *
                 * @custom:param orders                    The orders to fulfill. Note that
                 *                                         both the offerer and the
                 *                                         fulfiller must first approve this
                 *                                         contract (or the corresponding
                 *                                         conduit if indicated) to transfer
                 *                                         any relevant tokens on their
                 *                                         behalf and that contracts must
                 *                                         implement `onERC1155Received` to
                 *                                         receive ERC1155 tokens as
                 *                                         consideration.
                 * @custom:param offerFulfillments         An array of FulfillmentComponent
                 *                                         arrays indicating which offer
                 *                                         items to attempt to aggregate
                 *                                         when preparing executions. Note
                 *                                         that any offer items not included
                 *                                         as part of a fulfillment will be
                 *                                         sent unaggregated to the caller.
                 * @custom:param considerationFulfillments An array of FulfillmentComponent
                 *                                         arrays indicating which
                 *                                         consideration items to attempt to
                 *                                         aggregate when preparing
                 *                                         executions.
                 * @param fulfillerConduitKey              A bytes32 value indicating what
                 *                                         conduit, if any, to source the
                 *                                         fulfiller's token approvals from.
                 *                                         The zero hash signifies that no
                 *                                         conduit should be used (and
                 *                                         direct approvals set on this
                 *                                         contract).
                 * @param maximumFulfilled                 The maximum number of orders to
                 *                                         fulfill.
                 *
                 * @return availableOrders An array of booleans indicating if each order
                 *                         with an index corresponding to the index of the
                 *                         returned boolean was fulfillable or not.
                 * @return executions      An array of elements indicating the sequence of
                 *                         transfers performed as part of matching the given
                 *                         orders.
                 */
                function fulfillAvailableOrders(
                    /**
                     * @custom:name orders
                     */
                    Order[] calldata,
                    /**
                     * @custom:name offerFulfillments
                     */
                    FulfillmentComponent[][] calldata,
                    /**
                     * @custom:name considerationFulfillments
                     */
                    FulfillmentComponent[][] calldata,
                    bytes32 fulfillerConduitKey,
                    uint256 maximumFulfilled
                )
                    external
                    payable
                    override
                    returns (
                        bool[] memory /* availableOrders */,
                        Execution[] memory /* executions */
                    )
                {
                    // Convert orders to "advanced" orders and fulfill all available orders.
                    return
                        _fulfillAvailableAdvancedOrders(
                            _toAdvancedOrdersReturnType(_decodeOrdersAsAdvancedOrders)(
                                CalldataStart.pptr()
                            ), // Convert to advanced orders.
                            new CriteriaResolver[](0), // No criteria resolvers supplied.
                            _toNestedFulfillmentComponentsReturnType(
                                _decodeNestedFulfillmentComponents
                            )(
                                CalldataStart.pptr(
                                    Offset_fulfillAvailableOrders_offerFulfillments
                                )
                            ),
                            _toNestedFulfillmentComponentsReturnType(
                                _decodeNestedFulfillmentComponents
                            )(
                                CalldataStart.pptr(
                                    Offset_fulfillAvailableOrders_considerationFulfillments
                                )
                            ),
                            fulfillerConduitKey,
                            msg.sender,
                            maximumFulfilled
                        );
                }
                /**
                 * @notice Attempt to fill a group of orders, fully or partially, with an
                 *         arbitrary number of items for offer and consideration per order
                 *         alongside criteria resolvers containing specific token
                 *         identifiers and associated proofs. Any order that is not
                 *         currently active, has already been fully filled, or has been
                 *         cancelled will be omitted. Remaining offer and consideration
                 *         items will then be aggregated where possible as indicated by the
                 *         supplied offer and consideration component arrays and aggregated
                 *         items will be transferred to the fulfiller or to each intended
                 *         recipient, respectively. Note that a failing item transfer or an
                 *         issue with order formatting will cause the entire batch to fail.
                 *
                 * @custom:param advancedOrders            The orders to fulfill along with
                 *                                         the fraction of those orders to
                 *                                         attempt to fill. Note that both
                 *                                         the offerer and the fulfiller
                 *                                         must first approve this contract
                 *                                         (or their conduit if indicated by
                 *                                         the order) to transfer any
                 *                                         relevant tokens on their behalf
                 *                                         and that contracts must implement
                 *                                         `onERC1155Received` to receive
                 *                                         ERC1155 tokens as consideration.
                 *                                         Also note that all offer and
                 *                                         consideration components must
                 *                                         have no remainder after
                 *                                         multiplication of the respective
                 *                                         amount with the supplied fraction
                 *                                         for an order's partial fill
                 *                                         amount to be considered valid.
                 * @custom:param criteriaResolvers         An array where each element
                 *                                         contains a reference to a
                 *                                         specific offer or consideration,
                 *                                         a token identifier, and a proof
                 *                                         that the supplied token
                 *                                         identifier is contained in the
                 *                                         merkle root held by the item in
                 *                                         question's criteria element. Note
                 *                                         that an empty criteria indicates
                 *                                         that any (transferable) token
                 *                                         identifier on the token in
                 *                                         question is valid and that no
                 *                                         associated proof needs to be
                 *                                         supplied.
                 * @custom:param offerFulfillments         An array of FulfillmentComponent
                 *                                         arrays indicating which offer
                 *                                         items to attempt to aggregate
                 *                                         when preparing executions. Note
                 *                                         that any offer items not included
                 *                                         as part of a fulfillment will be
                 *                                         sent unaggregated to the caller.
                 * @custom:param considerationFulfillments An array of FulfillmentComponent
                 *                                         arrays indicating which
                 *                                         consideration items to attempt to
                 *                                         aggregate when preparing
                 *                                         executions.
                 * @param fulfillerConduitKey              A bytes32 value indicating what
                 *                                         conduit, if any, to source the
                 *                                         fulfiller's token approvals from.
                 *                                         The zero hash signifies that no
                 *                                         conduit should be used (and
                 *                                         direct approvals set on this
                 *                                         contract).
                 * @param recipient                        The intended recipient for all
                 *                                         received items, with `address(0)`
                 *                                         indicating that the caller should
                 *                                         receive the offer items.
                 * @param maximumFulfilled                 The maximum number of orders to
                 *                                         fulfill.
                 *
                 * @return availableOrders An array of booleans indicating if each order
                 *                         with an index corresponding to the index of the
                 *                         returned boolean was fulfillable or not.
                 * @return executions      An array of elements indicating the sequence of
                 *                         transfers performed as part of matching the given
                 *                         orders.
                 */
                function fulfillAvailableAdvancedOrders(
                    /**
                     * @custom:name advancedOrders
                     */
                    AdvancedOrder[] calldata,
                    /**
                     * @custom:name criteriaResolvers
                     */
                    CriteriaResolver[] calldata,
                    /**
                     * @custom:name offerFulfillments
                     */
                    FulfillmentComponent[][] calldata,
                    /**
                     * @custom:name considerationFulfillments
                     */
                    FulfillmentComponent[][] calldata,
                    bytes32 fulfillerConduitKey,
                    address recipient,
                    uint256 maximumFulfilled
                )
                    external
                    payable
                    override
                    returns (
                        bool[] memory /* availableOrders */,
                        Execution[] memory /* executions */
                    )
                {
                    // Fulfill all available orders.
                    return
                        _fulfillAvailableAdvancedOrders(
                            _toAdvancedOrdersReturnType(_decodeAdvancedOrders)(
                                CalldataStart.pptr()
                            ),
                            _toCriteriaResolversReturnType(_decodeCriteriaResolvers)(
                                CalldataStart.pptr(
                                    Offset_fulfillAvailableAdvancedOrders_criteriaResolvers
                                )
                            ),
                            _toNestedFulfillmentComponentsReturnType(
                                _decodeNestedFulfillmentComponents
                            )(
                                CalldataStart.pptr(
                                    Offset_fulfillAvailableAdvancedOrders_offerFulfillments
                                )
                            ),
                            _toNestedFulfillmentComponentsReturnType(
                                _decodeNestedFulfillmentComponents
                            )(
                                CalldataStart.pptr(
                                    Offset_fulfillAvailableAdvancedOrders_cnsdrationFlflmnts
                                )
                            ),
                            fulfillerConduitKey,
                            _substituteCallerForEmptyRecipient(recipient),
                            maximumFulfilled
                        );
                }
                /**
                 * @notice Match an arbitrary number of orders, each with an arbitrary
                 *         number of items for offer and consideration along with a set of
                 *         fulfillments allocating offer components to consideration
                 *         components. Note that this function does not support
                 *         criteria-based or partial filling of orders (though filling the
                 *         remainder of a partially-filled order is supported). Any unspent
                 *         offer item amounts or native tokens will be transferred to the
                 *         caller.
                 *
                 * @custom:param orders       The orders to match. Note that both the
                 *                            offerer and fulfiller on each order must first
                 *                            approve this contract (or their conduit if
                 *                            indicated by the order) to transfer any
                 *                            relevant tokens on their behalf and each
                 *                            consideration recipient must implement
                 *                            `onERC1155Received` to receive ERC1155 tokens.
                 * @custom:param fulfillments An array of elements allocating offer
                 *                            components to consideration components. Note
                 *                            that each consideration component must be
                 *                            fully met for the match operation to be valid,
                 *                            and that any unspent offer items will be sent
                 *                            unaggregated to the caller.
                 *
                 * @return executions An array of elements indicating the sequence of
                 *                    transfers performed as part of matching the given
                 *                    orders. Note that unspent offer item amounts or native
                 *                    tokens will not be reflected as part of this array.
                 */
                function matchOrders(
                    /**
                     * @custom:name orders
                     */
                    Order[] calldata,
                    /**
                     * @custom:name fulfillments
                     */
                    Fulfillment[] calldata
                ) external payable override returns (Execution[] memory /* executions */) {
                    // Convert to advanced, validate, and match orders using fulfillments.
                    return
                        _matchAdvancedOrders(
                            _toAdvancedOrdersReturnType(_decodeOrdersAsAdvancedOrders)(
                                CalldataStart.pptr()
                            ),
                            new CriteriaResolver[](0), // No criteria resolvers supplied.
                            _toFulfillmentsReturnType(_decodeFulfillments)(
                                CalldataStart.pptr(Offset_matchOrders_fulfillments)
                            ),
                            msg.sender
                        );
                }
                /**
                 * @notice Match an arbitrary number of full, partial, or contract orders,
                 *         each with an arbitrary number of items for offer and
                 *         consideration, supplying criteria resolvers containing specific
                 *         token identifiers and associated proofs as well as fulfillments
                 *         allocating offer components to consideration components. Any
                 *         unspent offer item amounts will be transferred to the designated
                 *         recipient (with the null address signifying to use the caller)
                 *         and any unspent native tokens will be returned to the caller.
                 *
                 * @custom:param advancedOrders    The advanced orders to match. Note that
                 *                                 both the offerer and fulfiller on each
                 *                                 order must first approve this contract
                 *                                 (or their conduit if indicated by the
                 *                                 order) to transfer any relevant tokens on
                 *                                 their behalf and each consideration
                 *                                 recipient must implement
                 *                                 `onERC1155Received` to receive ERC1155
                 *                                 tokens. Also note that the offer and
                 *                                 consideration components for each order
                 *                                 must have no remainder after multiplying
                 *                                 the respective amount with the supplied
                 *                                 fraction for the group of partial fills
                 *                                 to be considered valid.
                 * @custom:param criteriaResolvers An array where each element contains a
                 *                                 reference to a specific offer or
                 *                                 consideration, a token identifier, and a
                 *                                 proof that the supplied token identifier
                 *                                 is contained in the merkle root held by
                 *                                 the item in question's criteria element.
                 *                                 Note that an empty criteria indicates
                 *                                 that any (transferable) token identifier
                 *                                 on the token in question is valid and
                 *                                 that no associated proof needs to be
                 *                                 supplied.
                 * @custom:param fulfillments      An array of elements allocating offer
                 *                                 components to consideration components.
                 *                                 Note that each consideration component
                 *                                 must be fully met for the match operation
                 *                                 to be valid, and that any unspent offer
                 *                                 items will be sent unaggregated to the
                 *                                 designated recipient.
                 * @param recipient                The intended recipient for all unspent
                 *                                 offer item amounts, or the caller if the
                 *                                 null address is supplied.
                 *
                 * @return executions An array of elements indicating the sequence of
                 *                     transfers performed as part of matching the given
                 *                     orders. Note that unspent offer item amounts or
                 *                     native tokens will not be reflected as part of this
                 *                     array.
                 */
                function matchAdvancedOrders(
                    /**
                     * @custom:name advancedOrders
                     */
                    AdvancedOrder[] calldata,
                    /**
                     * @custom:name criteriaResolvers
                     */
                    CriteriaResolver[] calldata,
                    /**
                     * @custom:name fulfillments
                     */
                    Fulfillment[] calldata,
                    address recipient
                ) external payable override returns (Execution[] memory /* executions */) {
                    // Validate and match the advanced orders using supplied fulfillments.
                    return
                        _matchAdvancedOrders(
                            _toAdvancedOrdersReturnType(_decodeAdvancedOrders)(
                                CalldataStart.pptr()
                            ),
                            _toCriteriaResolversReturnType(_decodeCriteriaResolvers)(
                                CalldataStart.pptr(
                                    Offset_matchAdvancedOrders_criteriaResolvers
                                )
                            ),
                            _toFulfillmentsReturnType(_decodeFulfillments)(
                                CalldataStart.pptr(Offset_matchAdvancedOrders_fulfillments)
                            ),
                            _substituteCallerForEmptyRecipient(recipient)
                        );
                }
                /**
                 * @notice Cancel an arbitrary number of orders. Note that only the offerer
                 *         or the zone of a given order may cancel it. Callers should ensure
                 *         that the intended order was cancelled by calling `getOrderStatus`
                 *         and confirming that `isCancelled` returns `true`.
                 *
                 * @param orders The orders to cancel.
                 *
                 * @return cancelled A boolean indicating whether the supplied orders have
                 *                   been successfully cancelled.
                 */
                function cancel(
                    OrderComponents[] calldata orders
                ) external override returns (bool cancelled) {
                    // Cancel the orders.
                    cancelled = _cancel(orders);
                }
                /**
                 * @notice Validate an arbitrary number of orders, thereby registering their
                 *         signatures as valid and allowing the fulfiller to skip signature
                 *         verification on fulfillment. Note that validated orders may still
                 *         be unfulfillable due to invalid item amounts or other factors;
                 *         callers should determine whether validated orders are fulfillable
                 *         by simulating the fulfillment call prior to execution. Also note
                 *         that anyone can validate a signed order, but only the offerer can
                 *         validate an order without supplying a signature.
                 *
                 * @custom:param orders The orders to validate.
                 *
                 * @return validated A boolean indicating whether the supplied orders have
                 *                   been successfully validated.
                 */
                function validate(
                    /**
                     * @custom:name orders
                     */
                    Order[] calldata
                ) external override returns (bool /* validated */) {
                    return
                        _validate(_toOrdersReturnType(_decodeOrders)(CalldataStart.pptr()));
                }
                /**
                 * @notice Cancel all orders from a given offerer with a given zone in bulk
                 *         by incrementing a counter. Note that only the offerer may
                 *         increment the counter.
                 *
                 * @return newCounter The new counter.
                 */
                function incrementCounter() external override returns (uint256 newCounter) {
                    // Increment current counter for the supplied offerer.  Note that the
                    // counter is incremented by a large, quasi-random interval.
                    newCounter = _incrementCounter();
                }
                /**
                 * @notice Retrieve the order hash for a given order.
                 *
                 * @custom:param order The components of the order.
                 *
                 * @return orderHash The order hash.
                 */
                function getOrderHash(
                    /**
                     * @custom:name order
                     */
                    OrderComponents calldata
                ) external view override returns (bytes32 orderHash) {
                    CalldataPointer orderPointer = CalldataStart.pptr();
                    // Derive order hash by supplying order parameters along with counter.
                    orderHash = _deriveOrderHash(
                        _toOrderParametersReturnType(
                            _decodeOrderComponentsAsOrderParameters
                        )(orderPointer),
                        // Read order counter
                        orderPointer.offset(OrderParameters_counter_offset).readUint256()
                    );
                }
                /**
                 * @notice Retrieve the status of a given order by hash, including whether
                 *         the order has been cancelled or validated and the fraction of the
                 *         order that has been filled. Since the _orderStatus[orderHash]
                 *         does not get set for contract orders, getOrderStatus will always
                 *         return (false, false, 0, 0) for those hashes. Note that this
                 *         function is susceptible to view reentrancy and so should be used
                 *         with care when calling from other contracts.
                 *
                 * @param orderHash The order hash in question.
                 *
                 * @return isValidated A boolean indicating whether the order in question
                 *                     has been validated (i.e. previously approved or
                 *                     partially filled).
                 * @return isCancelled A boolean indicating whether the order in question
                 *                     has been cancelled.
                 * @return totalFilled The total portion of the order that has been filled
                 *                     (i.e. the "numerator").
                 * @return totalSize   The total size of the order that is either filled or
                 *                     unfilled (i.e. the "denominator").
                 */
                function getOrderStatus(
                    bytes32 orderHash
                )
                    external
                    view
                    override
                    returns (
                        bool isValidated,
                        bool isCancelled,
                        uint256 totalFilled,
                        uint256 totalSize
                    )
                {
                    // Retrieve the order status using the order hash.
                    return _getOrderStatus(orderHash);
                }
                /**
                 * @notice Retrieve the current counter for a given offerer.
                 *
                 * @param offerer The offerer in question.
                 *
                 * @return counter The current counter.
                 */
                function getCounter(
                    address offerer
                ) external view override returns (uint256 counter) {
                    // Return the counter for the supplied offerer.
                    counter = _getCounter(offerer);
                }
                /**
                 * @notice Retrieve configuration information for this contract.
                 *
                 * @return version           The contract version.
                 * @return domainSeparator   The domain separator for this contract.
                 * @return conduitController The conduit Controller set for this contract.
                 */
                function information()
                    external
                    view
                    override
                    returns (
                        string memory version,
                        bytes32 domainSeparator,
                        address conduitController
                    )
                {
                    // Return the information for this contract.
                    return _information();
                }
                /**
                 * @dev Gets the contract offerer nonce for the specified contract offerer.
                 *      Note that this function is susceptible to view reentrancy and so
                 *      should be used with care when calling from other contracts.
                 *
                 * @param contractOfferer The contract offerer for which to get the nonce.
                 *
                 * @return nonce The contract offerer nonce.
                 */
                function getContractOffererNonce(
                    address contractOfferer
                ) external view override returns (uint256 nonce) {
                    nonce = _contractNonces[contractOfferer];
                }
                /**
                 * @notice Retrieve the name of this contract.
                 *
                 * @return contractName The name of this contract.
                 */
                function name()
                    external
                    pure
                    override
                    returns (string memory /* contractName */)
                {
                    // Return the name of the contract.
                    return _name();
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.17;
            import { Side, ItemType, OrderType } from "./ConsiderationEnums.sol";
            import {
                AdvancedOrder,
                ConsiderationItem,
                CriteriaResolver,
                Execution,
                Fulfillment,
                FulfillmentComponent,
                OfferItem,
                OrderParameters,
                ReceivedItem
            } from "./ConsiderationStructs.sol";
            import { OrderFulfiller } from "./OrderFulfiller.sol";
            import { FulfillmentApplier } from "./FulfillmentApplier.sol";
            import {
                _revertConsiderationNotMet,
                _revertInsufficientNativeTokensSupplied,
                _revertInvalidNativeOfferItem,
                _revertNoSpecifiedOrdersAvailable
            } from "./ConsiderationErrors.sol";
            import {
                AccumulatorDisarmed,
                ConsiderationItem_recipient_offset,
                Execution_offerer_offset,
                NonMatchSelector_InvalidErrorValue,
                NonMatchSelector_MagicMask,
                OneWord,
                OneWordShift,
                OrdersMatchedTopic0,
                ReceivedItem_amount_offset,
                ReceivedItem_recipient_offset,
                TwoWords
            } from "./ConsiderationConstants.sol";
            /**
             * @title OrderCombiner
             * @author 0age
             * @notice OrderCombiner contains logic for fulfilling combinations of orders,
             *         either by matching offer items to consideration items or by
             *         fulfilling orders where available.
             */
            contract OrderCombiner is OrderFulfiller, FulfillmentApplier {
                /**
                 * @dev Derive and set hashes, reference chainId, and associated domain
                 *      separator during deployment.
                 *
                 * @param conduitController A contract that deploys conduits, or proxies
                 *                          that may optionally be used to transfer approved
                 *                          ERC20/721/1155 tokens.
                 */
                constructor(address conduitController) OrderFulfiller(conduitController) {}
                /**
                 * @notice Internal function to attempt to fill a group of orders, fully or
                 *         partially, with an arbitrary number of items for offer and
                 *         consideration per order alongside criteria resolvers containing
                 *         specific token identifiers and associated proofs. Any order that
                 *         is not currently active, has already been fully filled, or has
                 *         been cancelled will be omitted. Remaining offer and consideration
                 *         items will then be aggregated where possible as indicated by the
                 *         supplied offer and consideration component arrays and aggregated
                 *         items will be transferred to the fulfiller or to each intended
                 *         recipient, respectively. Note that a failing item transfer or an
                 *         issue with order formatting will cause the entire batch to fail.
                 *
                 * @param advancedOrders            The orders to fulfill along with the
                 *                                  fraction of those orders to attempt to
                 *                                  fill. Note that both the offerer and the
                 *                                  fulfiller must first approve this
                 *                                  contract (or a conduit if indicated by
                 *                                  the order) to transfer any relevant
                 *                                  tokens on their behalf and that
                 *                                  contracts must implement
                 *                                  `onERC1155Received` in order to receive
                 *                                  ERC1155 tokens as consideration. Also
                 *                                  note that all offer and consideration
                 *                                  components must have no remainder after
                 *                                  multiplication of the respective amount
                 *                                  with the supplied fraction for an
                 *                                  order's partial fill amount to be
                 *                                  considered valid.
                 * @param criteriaResolvers         An array where each element contains a
                 *                                  reference to a specific offer or
                 *                                  consideration, a token identifier, and a
                 *                                  proof that the supplied token identifier
                 *                                  is contained in the merkle root held by
                 *                                  the item in question's criteria element.
                 *                                  Note that an empty criteria indicates
                 *                                  that any (transferable) token
                 *                                  identifier on the token in question is
                 *                                  valid and that no associated proof needs
                 *                                  to be supplied.
                 * @param offerFulfillments         An array of FulfillmentComponent arrays
                 *                                  indicating which offer items to attempt
                 *                                  to aggregate when preparing executions.
                 * @param considerationFulfillments An array of FulfillmentComponent arrays
                 *                                  indicating which consideration items to
                 *                                  attempt to aggregate when preparing
                 *                                  executions.
                 * @param fulfillerConduitKey       A bytes32 value indicating what conduit,
                 *                                  if any, to source the fulfiller's token
                 *                                  approvals from. The zero hash signifies
                 *                                  that no conduit should be used (and
                 *                                  direct approvals set on Consideration).
                 * @param recipient                 The intended recipient for all received
                 *                                  items.
                 * @param maximumFulfilled          The maximum number of orders to fulfill.
                 *
                 * @return availableOrders An array of booleans indicating if each order
                 *                         with an index corresponding to the index of the
                 *                         returned boolean was fulfillable or not.
                 * @return executions      An array of elements indicating the sequence of
                 *                         transfers performed as part of matching the given
                 *                         orders.
                 */
                function _fulfillAvailableAdvancedOrders(
                    AdvancedOrder[] memory advancedOrders,
                    CriteriaResolver[] memory criteriaResolvers,
                    FulfillmentComponent[][] memory offerFulfillments,
                    FulfillmentComponent[][] memory considerationFulfillments,
                    bytes32 fulfillerConduitKey,
                    address recipient,
                    uint256 maximumFulfilled
                )
                    internal
                    returns (
                        bool[] memory /* availableOrders */,
                        Execution[] memory /* executions */
                    )
                {
                    // Validate orders, apply amounts, & determine if they use conduits.
                    (
                        bytes32[] memory orderHashes,
                        bool containsNonOpen
                    ) = _validateOrdersAndPrepareToFulfill(
                            advancedOrders,
                            criteriaResolvers,
                            false, // Signifies that invalid orders should NOT revert.
                            maximumFulfilled,
                            recipient
                        );
                    // Aggregate used offer and consideration items and execute transfers.
                    return
                        _executeAvailableFulfillments(
                            advancedOrders,
                            offerFulfillments,
                            considerationFulfillments,
                            fulfillerConduitKey,
                            recipient,
                            orderHashes,
                            containsNonOpen
                        );
                }
                /**
                 * @dev Internal function to validate a group of orders, update their
                 *      statuses, reduce amounts by their previously filled fractions, apply
                 *      criteria resolvers, and emit OrderFulfilled events. Note that this
                 *      function needs to be called before
                 *      _aggregateValidFulfillmentConsiderationItems to set the memory
                 *      layout that _aggregateValidFulfillmentConsiderationItems depends on.
                 *
                 * @param advancedOrders    The advanced orders to validate and reduce by
                 *                          their previously filled amounts.
                 * @param criteriaResolvers An array where each element contains a reference
                 *                          to a specific order as well as that order's
                 *                          offer or consideration, a token identifier, and
                 *                          a proof that the supplied token identifier is
                 *                          contained in the order's merkle root. Note that
                 *                          a root of zero indicates that any transferable
                 *                          token identifier is valid and that no proof
                 *                          needs to be supplied.
                 * @param revertOnInvalid   A boolean indicating whether to revert on any
                 *                          order being invalid; setting this to false will
                 *                          instead cause the invalid order to be skipped.
                 * @param maximumFulfilled  The maximum number of orders to fulfill.
                 * @param recipient         The intended recipient for all items that do not
                 *                          already have a designated recipient and are not
                 *                          already used as part of a provided fulfillment.
                 *
                 * @return orderHashes     The hashes of the orders being fulfilled.
                 * @return containsNonOpen A boolean indicating whether any restricted or
                 *                         contract orders are present within the provided
                 *                         array of advanced orders.
                 */
                function _validateOrdersAndPrepareToFulfill(
                    AdvancedOrder[] memory advancedOrders,
                    CriteriaResolver[] memory criteriaResolvers,
                    bool revertOnInvalid,
                    uint256 maximumFulfilled,
                    address recipient
                ) internal returns (bytes32[] memory orderHashes, bool containsNonOpen) {
                    // Ensure this function cannot be triggered during a reentrant call.
                    _setReentrancyGuard(true); // Native tokens accepted during execution.
                    // Declare an error buffer indicating status of any native offer items.
                    // Native tokens may only be provided as part of contract orders or when
                    // fulfilling via matchOrders or matchAdvancedOrders; if bits indicating
                    // these conditions are not met have been set, throw.
                    uint256 invalidNativeOfferItemErrorBuffer;
                    // Use assembly to set the value for the second bit of the error buffer.
                    assembly {
                        /**
                         * Use the 231st bit of the error buffer to indicate whether the
                         * current function is not matchAdvancedOrders or matchOrders.
                         *
                         * sig                                func
                         * -----------------------------------------------------------------
                         * 1010100000010111010001000 0 000100 matchOrders
                         * 1111001011010001001010110 0 010010 matchAdvancedOrders
                         * 1110110110011000101001010 1 110100 fulfillAvailableOrders
                         * 1000011100100000000110110 1 000001 fulfillAvailableAdvancedOrders
                         *                           ^ 7th bit
                         */
                        invalidNativeOfferItemErrorBuffer := and(
                            NonMatchSelector_MagicMask,
                            calldataload(0)
                        )
                    }
                    // Declare variables for later use.
                    AdvancedOrder memory advancedOrder;
                    uint256 terminalMemoryOffset;
                    unchecked {
                        // Read length of orders array and place on the stack.
                        uint256 totalOrders = advancedOrders.length;
                        // Track the order hash for each order being fulfilled.
                        orderHashes = new bytes32[](totalOrders);
                        // Determine the memory offset to terminate on during loops.
                        terminalMemoryOffset = (totalOrders + 1) << OneWordShift;
                    }
                    // Skip overflow checks as all for loops are indexed starting at zero.
                    unchecked {
                        // Declare inner variables.
                        OfferItem[] memory offer;
                        ConsiderationItem[] memory consideration;
                        // Iterate over each order.
                        for (uint256 i = OneWord; i < terminalMemoryOffset; i += OneWord) {
                            // Retrieve order using assembly to bypass out-of-range check.
                            assembly {
                                advancedOrder := mload(add(advancedOrders, i))
                            }
                            // Determine if max number orders have already been fulfilled.
                            if (maximumFulfilled == 0) {
                                // Mark fill fraction as zero as the order will not be used.
                                advancedOrder.numerator = 0;
                                // Continue iterating through the remaining orders.
                                continue;
                            }
                            // Validate it, update status, and determine fraction to fill.
                            (
                                bytes32 orderHash,
                                uint256 numerator,
                                uint256 denominator
                            ) = _validateOrderAndUpdateStatus(
                                    advancedOrder,
                                    revertOnInvalid
                                );
                            // Do not track hash or adjust prices if order is not fulfilled.
                            if (numerator == 0) {
                                // Mark fill fraction as zero if the order is not fulfilled.
                                advancedOrder.numerator = 0;
                                // Continue iterating through the remaining orders.
                                continue;
                            }
                            // Otherwise, track the order hash in question.
                            assembly {
                                mstore(add(orderHashes, i), orderHash)
                            }
                            // Decrement the number of fulfilled orders.
                            // Skip underflow check as the condition before
                            // implies that maximumFulfilled > 0.
                            --maximumFulfilled;
                            // Place the start time for the order on the stack.
                            uint256 startTime = advancedOrder.parameters.startTime;
                            // Place the end time for the order on the stack.
                            uint256 endTime = advancedOrder.parameters.endTime;
                            // Retrieve array of offer items for the order in question.
                            offer = advancedOrder.parameters.offer;
                            // Read length of offer array and place on the stack.
                            uint256 totalOfferItems = offer.length;
                            {
                                // Determine the order type, used to check for eligibility
                                // for native token offer items as well as for the presence
                                // of restricted and contract orders (or non-open orders).
                                OrderType orderType = advancedOrder.parameters.orderType;
                                // Utilize assembly to efficiently check for order types.
                                // Note that these checks expect that there are no order
                                // types beyond the current set (0-4) and will need to be
                                // modified if more order types are added.
                                assembly {
                                    // Declare a variable indicating if the order is not a
                                    // contract order. Cache in scratch space to avoid stack
                                    // depth errors.
                                    let isNonContract := lt(orderType, 4)
                                    mstore(0, isNonContract)
                                    // Update the variable indicating if the order is not an
                                    // open order, remaining set if it has been set already.
                                    containsNonOpen := or(containsNonOpen, gt(orderType, 1))
                                }
                            }
                            // Iterate over each offer item on the order.
                            for (uint256 j = 0; j < totalOfferItems; ++j) {
                                // Retrieve the offer item.
                                OfferItem memory offerItem = offer[j];
                                // If the offer item is for the native token and the order
                                // type is not a contract order type, set the first bit of
                                // the error buffer to true.
                                assembly {
                                    invalidNativeOfferItemErrorBuffer := or(
                                        invalidNativeOfferItemErrorBuffer,
                                        lt(mload(offerItem), mload(0))
                                    )
                                }
                                // Apply order fill fraction to offer item end amount.
                                uint256 endAmount = _getFraction(
                                    numerator,
                                    denominator,
                                    offerItem.endAmount
                                );
                                // Reuse same fraction if start and end amounts are equal.
                                if (offerItem.startAmount == offerItem.endAmount) {
                                    // Apply derived amount to both start and end amount.
                                    offerItem.startAmount = endAmount;
                                } else {
                                    // Apply order fill fraction to offer item start amount.
                                    offerItem.startAmount = _getFraction(
                                        numerator,
                                        denominator,
                                        offerItem.startAmount
                                    );
                                }
                                // Adjust offer amount using current time; round down.
                                uint256 currentAmount = _locateCurrentAmount(
                                    offerItem.startAmount,
                                    endAmount,
                                    startTime,
                                    endTime,
                                    false // round down
                                );
                                // Update amounts in memory to match the current amount.
                                // Note that the end amount is used to track spent amounts.
                                offerItem.startAmount = currentAmount;
                                offerItem.endAmount = currentAmount;
                            }
                            // Retrieve array of consideration items for order in question.
                            consideration = (advancedOrder.parameters.consideration);
                            // Read length of consideration array and place on the stack.
                            uint256 totalConsiderationItems = consideration.length;
                            // Iterate over each consideration item on the order.
                            for (uint256 j = 0; j < totalConsiderationItems; ++j) {
                                // Retrieve the consideration item.
                                ConsiderationItem memory considerationItem = (
                                    consideration[j]
                                );
                                // Apply fraction to consideration item end amount.
                                uint256 endAmount = _getFraction(
                                    numerator,
                                    denominator,
                                    considerationItem.endAmount
                                );
                                // Reuse same fraction if start and end amounts are equal.
                                if (
                                    considerationItem.startAmount ==
                                    considerationItem.endAmount
                                ) {
                                    // Apply derived amount to both start and end amount.
                                    considerationItem.startAmount = endAmount;
                                } else {
                                    // Apply fraction to consideration item start amount.
                                    considerationItem.startAmount = _getFraction(
                                        numerator,
                                        denominator,
                                        considerationItem.startAmount
                                    );
                                }
                                // Adjust consideration amount using current time; round up.
                                uint256 currentAmount = (
                                    _locateCurrentAmount(
                                        considerationItem.startAmount,
                                        endAmount,
                                        startTime,
                                        endTime,
                                        true // round up
                                    )
                                );
                                considerationItem.startAmount = currentAmount;
                                // Utilize assembly to manually "shift" the recipient value,
                                // then to copy the start amount to the recipient.
                                // Note that this sets up the memory layout that is
                                // subsequently relied upon by
                                // _aggregateValidFulfillmentConsiderationItems.
                                assembly {
                                    // Derive the pointer to the recipient using the item
                                    // pointer along with the offset to the recipient.
                                    let considerationItemRecipientPtr := add(
                                        considerationItem,
                                        ConsiderationItem_recipient_offset // recipient
                                    )
                                    // Write recipient to endAmount, as endAmount is not
                                    // used from this point on and can be repurposed to fit
                                    // the layout of a ReceivedItem.
                                    mstore(
                                        add(
                                            considerationItem,
                                            ReceivedItem_recipient_offset // old endAmount
                                        ),
                                        mload(considerationItemRecipientPtr)
                                    )
                                    // Write startAmount to recipient, as recipient is not
                                    // used from this point on and can be repurposed to
                                    // track received amounts.
                                    mstore(considerationItemRecipientPtr, currentAmount)
                                }
                            }
                        }
                    }
                    // If the first bit is set, a native offer item was encountered on an
                    // order that is not a contract order. If the 231st bit is set in the
                    // error buffer, the current function is not matchOrders or
                    // matchAdvancedOrders. If the value is 1 + (1 << 230), then both the
                    // 1st and 231st bits were set; in that case, revert with an error.
                    if (
                        invalidNativeOfferItemErrorBuffer ==
                        NonMatchSelector_InvalidErrorValue
                    ) {
                        _revertInvalidNativeOfferItem();
                    }
                    // Apply criteria resolvers to each order as applicable.
                    _applyCriteriaResolvers(advancedOrders, criteriaResolvers);
                    // Emit an event for each order signifying that it has been fulfilled.
                    // Skip overflow checks as all for loops are indexed starting at zero.
                    unchecked {
                        bytes32 orderHash;
                        // Iterate over each order.
                        for (uint256 i = OneWord; i < terminalMemoryOffset; i += OneWord) {
                            assembly {
                                orderHash := mload(add(orderHashes, i))
                            }
                            // Do not emit an event if no order hash is present.
                            if (orderHash == bytes32(0)) {
                                continue;
                            }
                            // Retrieve order using assembly to bypass out-of-range check.
                            assembly {
                                advancedOrder := mload(add(advancedOrders, i))
                            }
                            // Retrieve parameters for the order in question.
                            OrderParameters memory orderParameters = (
                                advancedOrder.parameters
                            );
                            // Emit an OrderFulfilled event.
                            _emitOrderFulfilledEvent(
                                orderHash,
                                orderParameters.offerer,
                                orderParameters.zone,
                                recipient,
                                orderParameters.offer,
                                orderParameters.consideration
                            );
                        }
                    }
                }
                /**
                 * @dev Internal function to fulfill a group of validated orders, fully or
                 *      partially, with an arbitrary number of items for offer and
                 *      consideration per order and to execute transfers. Any order that is
                 *      not currently active, has already been fully filled, or has been
                 *      cancelled will be omitted. Remaining offer and consideration items
                 *      will then be aggregated where possible as indicated by the supplied
                 *      offer and consideration component arrays and aggregated items will
                 *      be transferred to the fulfiller or to each intended recipient,
                 *      respectively. Note that a failing item transfer or an issue with
                 *      order formatting will cause the entire batch to fail.
                 *
                 * @param advancedOrders            The orders to fulfill along with the
                 *                                  fraction of those orders to attempt to
                 *                                  fill. Note that both the offerer and the
                 *                                  fulfiller must first approve this
                 *                                  contract (or the conduit if indicated by
                 *                                  the order) to transfer any relevant
                 *                                  tokens on their behalf and that
                 *                                  contracts must implement
                 *                                  `onERC1155Received` in order to receive
                 *                                  ERC1155 tokens as consideration. Also
                 *                                  note that all offer and consideration
                 *                                  components must have no remainder after
                 *                                  multiplication of the respective amount
                 *                                  with the supplied fraction for an
                 *                                  order's partial fill amount to be
                 *                                  considered valid.
                 * @param offerFulfillments         An array of FulfillmentComponent arrays
                 *                                  indicating which offer items to attempt
                 *                                  to aggregate when preparing executions.
                 * @param considerationFulfillments An array of FulfillmentComponent arrays
                 *                                  indicating which consideration items to
                 *                                  attempt to aggregate when preparing
                 *                                  executions.
                 * @param fulfillerConduitKey       A bytes32 value indicating what conduit,
                 *                                  if any, to source the fulfiller's token
                 *                                  approvals from. The zero hash signifies
                 *                                  that no conduit should be used, with
                 *                                  direct approvals set on Consideration.
                 * @param recipient                 The intended recipient for all items
                 *                                  that do not already have a designated
                 *                                  recipient and are not already used as
                 *                                  part of a provided fulfillment.
                 * @param orderHashes               An array of order hashes for each order.
                 * @param containsNonOpen           A boolean indicating whether any
                 *                                  restricted or contract orders are
                 *                                  present within the provided array of
                 *                                  advanced orders.
                 *
                 * @return availableOrders An array of booleans indicating if each order
                 *                         with an index corresponding to the index of the
                 *                         returned boolean was fulfillable or not.
                 * @return executions      An array of elements indicating the sequence of
                 *                         transfers performed as part of matching the given
                 *                         orders.
                 */
                function _executeAvailableFulfillments(
                    AdvancedOrder[] memory advancedOrders,
                    FulfillmentComponent[][] memory offerFulfillments,
                    FulfillmentComponent[][] memory considerationFulfillments,
                    bytes32 fulfillerConduitKey,
                    address recipient,
                    bytes32[] memory orderHashes,
                    bool containsNonOpen
                )
                    internal
                    returns (bool[] memory availableOrders, Execution[] memory executions)
                {
                    // Retrieve length of offer fulfillments array and place on the stack.
                    uint256 totalOfferFulfillments = offerFulfillments.length;
                    // Retrieve length of consideration fulfillments array & place on stack.
                    uint256 totalConsiderationFulfillments = (
                        considerationFulfillments.length
                    );
                    // Allocate an execution for each offer and consideration fulfillment.
                    executions = new Execution[](
                        totalOfferFulfillments + totalConsiderationFulfillments
                    );
                    // Skip overflow checks as all for loops are indexed starting at zero.
                    unchecked {
                        // Track number of filtered executions.
                        uint256 totalFilteredExecutions = 0;
                        // Iterate over each offer fulfillment.
                        for (uint256 i = 0; i < totalOfferFulfillments; ) {
                            // Derive aggregated execution corresponding with fulfillment.
                            Execution memory execution = _aggregateAvailable(
                                advancedOrders,
                                Side.OFFER,
                                offerFulfillments[i],
                                fulfillerConduitKey,
                                recipient
                            );
                            // If the execution is filterable...
                            if (_isFilterableExecution(execution)) {
                                // Increment total filtered executions.
                                ++totalFilteredExecutions;
                            } else {
                                // Otherwise, assign the execution to the executions array.
                                executions[i - totalFilteredExecutions] = execution;
                            }
                            // Increment iterator.
                            ++i;
                        }
                        // Iterate over each consideration fulfillment.
                        for (uint256 i = 0; i < totalConsiderationFulfillments; ) {
                            // Derive aggregated execution corresponding with fulfillment.
                            Execution memory execution = _aggregateAvailable(
                                advancedOrders,
                                Side.CONSIDERATION,
                                considerationFulfillments[i],
                                fulfillerConduitKey,
                                address(0) // unused
                            );
                            // If the execution is filterable...
                            if (_isFilterableExecution(execution)) {
                                // Increment total filtered executions.
                                ++totalFilteredExecutions;
                            } else {
                                // Otherwise, assign the execution to the executions array.
                                executions[
                                    i + totalOfferFulfillments - totalFilteredExecutions
                                ] = execution;
                            }
                            // Increment iterator.
                            ++i;
                        }
                        // If some number of executions have been filtered...
                        if (totalFilteredExecutions != 0) {
                            // reduce the total length of the executions array.
                            assembly {
                                mstore(
                                    executions,
                                    sub(mload(executions), totalFilteredExecutions)
                                )
                            }
                        }
                    }
                    // Revert if no orders are available.
                    if (executions.length == 0) {
                        _revertNoSpecifiedOrdersAvailable();
                    }
                    // Perform final checks and return.
                    availableOrders = _performFinalChecksAndExecuteOrders(
                        advancedOrders,
                        executions,
                        orderHashes,
                        recipient,
                        containsNonOpen
                    );
                    return (availableOrders, executions);
                }
                /**
                 * @dev Internal function to perform a final check that each consideration
                 *      item for an arbitrary number of fulfilled orders has been met and to
                 *      trigger associated executions, transferring the respective items.
                 *
                 * @param advancedOrders  The orders to check and perform executions for.
                 * @param executions      An array of elements indicating the sequence of
                 *                        transfers to perform when fulfilling the given
                 *                        orders.
                 * @param orderHashes     An array of order hashes for each order.
                 * @param recipient       The intended recipient for all items that do not
                 *                        already have a designated recipient and are not
                 *                        used as part of a provided fulfillment.
                 * @param containsNonOpen A boolean indicating whether any restricted or
                 *                        contract orders are present within the provided
                 *                        array of advanced orders.
                 *
                 * @return availableOrders An array of booleans indicating if each order
                 *                         with an index corresponding to the index of the
                 *                         returned boolean was fulfillable or not.
                 */
                function _performFinalChecksAndExecuteOrders(
                    AdvancedOrder[] memory advancedOrders,
                    Execution[] memory executions,
                    bytes32[] memory orderHashes,
                    address recipient,
                    bool containsNonOpen
                ) internal returns (bool[] memory /* availableOrders */) {
                    // Retrieve the length of the advanced orders array and place on stack.
                    uint256 totalOrders = advancedOrders.length;
                    // Initialize array for tracking available orders.
                    bool[] memory availableOrders = new bool[](totalOrders);
                    // Initialize an accumulator array. From this point forward, no new
                    // memory regions can be safely allocated until the accumulator is no
                    // longer being utilized, as the accumulator operates in an open-ended
                    // fashion from this memory pointer; existing memory may still be
                    // accessed and modified, however.
                    bytes memory accumulator = new bytes(AccumulatorDisarmed);
                    {
                        // Declare a variable for the available native token balance.
                        uint256 nativeTokenBalance;
                        // Retrieve the length of the executions array and place on stack.
                        uint256 totalExecutions = executions.length;
                        // Iterate over each execution.
                        for (uint256 i = 0; i < totalExecutions; ) {
                            // Retrieve the execution and the associated received item.
                            Execution memory execution = executions[i];
                            ReceivedItem memory item = execution.item;
                            // If execution transfers native tokens, reduce value available.
                            if (item.itemType == ItemType.NATIVE) {
                                // Get the current available balance of native tokens.
                                assembly {
                                    nativeTokenBalance := selfbalance()
                                }
                                // Ensure that sufficient native tokens are still available.
                                if (item.amount > nativeTokenBalance) {
                                    _revertInsufficientNativeTokensSupplied();
                                }
                            }
                            // Transfer the item specified by the execution.
                            _transfer(
                                item,
                                execution.offerer,
                                execution.conduitKey,
                                accumulator
                            );
                            // Skip overflow check as for loop is indexed starting at zero.
                            unchecked {
                                ++i;
                            }
                        }
                    }
                    // Skip overflow checks as all for loops are indexed starting at zero.
                    unchecked {
                        // Iterate over each order.
                        for (uint256 i = 0; i < totalOrders; ++i) {
                            // Retrieve the order in question.
                            AdvancedOrder memory advancedOrder = advancedOrders[i];
                            // Skip the order in question if not being not fulfilled.
                            if (advancedOrder.numerator == 0) {
                                // Explicitly set availableOrders at the given index to
                                // guard against the possibility of dirtied memory.
                                availableOrders[i] = false;
                                continue;
                            }
                            // Mark the order as available.
                            availableOrders[i] = true;
                            // Retrieve the order parameters.
                            OrderParameters memory parameters = advancedOrder.parameters;
                            {
                                // Retrieve offer items.
                                OfferItem[] memory offer = parameters.offer;
                                // Read length of offer array & place on the stack.
                                uint256 totalOfferItems = offer.length;
                                // Iterate over each offer item to restore it.
                                for (uint256 j = 0; j < totalOfferItems; ++j) {
                                    // Retrieve the offer item in question.
                                    OfferItem memory offerItem = offer[j];
                                    // Transfer to recipient if unspent amount is not zero.
                                    // Note that the transfer will not be reflected in the
                                    // executions array.
                                    if (offerItem.startAmount != 0) {
                                        // Replace the endAmount parameter with the recipient to
                                        // make offerItem compatible with the ReceivedItem input
                                        // to _transfer and cache the original endAmount so it
                                        // can be restored after the transfer.
                                        uint256 originalEndAmount = _replaceEndAmountWithRecipient(
                                                offerItem,
                                                recipient
                                            );
                                        // Transfer excess offer item amount to recipient.
                                        _toOfferItemInput(_transfer)(
                                            offerItem,
                                            parameters.offerer,
                                            parameters.conduitKey,
                                            accumulator
                                        );
                                        // Restore the original endAmount in offerItem.
                                        assembly {
                                            mstore(
                                                add(
                                                    offerItem,
                                                    ReceivedItem_recipient_offset
                                                ),
                                                originalEndAmount
                                            )
                                        }
                                    }
                                    // Restore original amount on the offer item.
                                    offerItem.startAmount = offerItem.endAmount;
                                }
                            }
                            {
                                // Read consideration items & ensure they are fulfilled.
                                ConsiderationItem[] memory consideration = (
                                    parameters.consideration
                                );
                                // Read length of consideration array & place on stack.
                                uint256 totalConsiderationItems = consideration.length;
                                // Iterate over each consideration item.
                                for (uint256 j = 0; j < totalConsiderationItems; ++j) {
                                    ConsiderationItem memory considerationItem = (
                                        consideration[j]
                                    );
                                    // Retrieve remaining amount on consideration item.
                                    uint256 unmetAmount = considerationItem.startAmount;
                                    // Revert if the remaining amount is not zero.
                                    if (unmetAmount != 0) {
                                        _revertConsiderationNotMet(i, j, unmetAmount);
                                    }
                                    // Utilize assembly to restore the original value.
                                    assembly {
                                        // Write recipient to startAmount.
                                        mstore(
                                            add(
                                                considerationItem,
                                                ReceivedItem_amount_offset
                                            ),
                                            mload(
                                                add(
                                                    considerationItem,
                                                    ConsiderationItem_recipient_offset
                                                )
                                            )
                                        )
                                    }
                                }
                            }
                        }
                    }
                    // Trigger any accumulated transfers via call to the conduit.
                    _triggerIfArmed(accumulator);
                    // Determine whether any native token balance remains.
                    uint256 remainingNativeTokenBalance;
                    assembly {
                        remainingNativeTokenBalance := selfbalance()
                    }
                    // Return any remaining native token balance to the caller.
                    if (remainingNativeTokenBalance != 0) {
                        _transferNativeTokens(
                            payable(msg.sender),
                            remainingNativeTokenBalance
                        );
                    }
                    // If any restricted or contract orders are present in the group of
                    // orders being fulfilled, perform any validateOrder or ratifyOrder
                    // calls after all executions and related transfers are complete.
                    if (containsNonOpen) {
                        // Iterate over each order a second time.
                        for (uint256 i = 0; i < totalOrders; ) {
                            // Ensure the order in question is being fulfilled.
                            if (availableOrders[i]) {
                                // Check restricted orders and contract orders.
                                _assertRestrictedAdvancedOrderValidity(
                                    advancedOrders[i],
                                    orderHashes,
                                    orderHashes[i]
                                );
                            }
                            // Skip overflow checks as for loop is indexed starting at zero.
                            unchecked {
                                ++i;
                            }
                        }
                    }
                    // Clear the reentrancy guard.
                    _clearReentrancyGuard();
                    // Return the array containing available orders.
                    return availableOrders;
                }
                /**
                 * @dev Internal function to emit an OrdersMatched event using the same
                 *      memory region as the existing order hash array.
                 *
                 * @param orderHashes An array of order hashes to include as an argument for
                 *                    the OrdersMatched event.
                 */
                function _emitOrdersMatched(bytes32[] memory orderHashes) internal {
                    assembly {
                        // Load the array length from memory.
                        let length := mload(orderHashes)
                        // Get the full size of the event data - one word for the offset,
                        // one for the array length and one per hash.
                        let dataSize := add(TwoWords, shl(OneWordShift, length))
                        // Get pointer to start of data, reusing word before array length
                        // for the offset.
                        let dataPointer := sub(orderHashes, OneWord)
                        // Cache the existing word in memory at the offset pointer.
                        let cache := mload(dataPointer)
                        // Write an offset of 32.
                        mstore(dataPointer, OneWord)
                        // Emit the OrdersMatched event.
                        log1(dataPointer, dataSize, OrdersMatchedTopic0)
                        // Restore the cached word.
                        mstore(dataPointer, cache)
                    }
                }
                /**
                 * @dev Internal function to match an arbitrary number of full or partial
                 *      orders, each with an arbitrary number of items for offer and
                 *      consideration, supplying criteria resolvers containing specific
                 *      token identifiers and associated proofs as well as fulfillments
                 *      allocating offer components to consideration components.
                 *
                 * @param advancedOrders    The advanced orders to match. Note that both the
                 *                          offerer and fulfiller on each order must first
                 *                          approve this contract (or their conduit if
                 *                          indicated by the order) to transfer any relevant
                 *                          tokens on their behalf and each consideration
                 *                          recipient must implement `onERC1155Received` in
                 *                          order to receive ERC1155 tokens. Also note that
                 *                          the offer and consideration components for each
                 *                          order must have no remainder after multiplying
                 *                          the respective amount with the supplied fraction
                 *                          in order for the group of partial fills to be
                 *                          considered valid.
                 * @param criteriaResolvers An array where each element contains a reference
                 *                          to a specific order as well as that order's
                 *                          offer or consideration, a token identifier, and
                 *                          a proof that the supplied token identifier is
                 *                          contained in the order's merkle root. Note that
                 *                          an empty root indicates that any (transferable)
                 *                          token identifier is valid and that no associated
                 *                          proof needs to be supplied.
                 * @param fulfillments      An array of elements allocating offer components
                 *                          to consideration components. Note that each
                 *                          consideration component must be fully met in
                 *                          order for the match operation to be valid.
                 * @param recipient         The intended recipient for all unspent offer
                 *                          item amounts.
                 *
                 * @return executions An array of elements indicating the sequence of
                 *                    transfers performed as part of matching the given
                 *                    orders.
                 */
                function _matchAdvancedOrders(
                    AdvancedOrder[] memory advancedOrders,
                    CriteriaResolver[] memory criteriaResolvers,
                    Fulfillment[] memory fulfillments,
                    address recipient
                ) internal returns (Execution[] memory /* executions */) {
                    // Validate orders, update order status, and determine item amounts.
                    (
                        bytes32[] memory orderHashes,
                        bool containsNonOpen
                    ) = _validateOrdersAndPrepareToFulfill(
                            advancedOrders,
                            criteriaResolvers,
                            true, // Signifies that invalid orders should revert.
                            advancedOrders.length,
                            recipient
                        );
                    // Emit OrdersMatched event, providing an array of matched order hashes.
                    _emitOrdersMatched(orderHashes);
                    // Fulfill the orders using the supplied fulfillments and recipient.
                    return
                        _fulfillAdvancedOrders(
                            advancedOrders,
                            fulfillments,
                            orderHashes,
                            recipient,
                            containsNonOpen
                        );
                }
                /**
                 * @dev Internal function to fulfill an arbitrary number of orders, either
                 *      full or partial, after validating, adjusting amounts, and applying
                 *      criteria resolvers.
                 *
                 * @param advancedOrders  The orders to match, including a fraction to
                 *                        attempt to fill for each order.
                 * @param fulfillments    An array of elements allocating offer components
                 *                        to consideration components. Note that the final
                 *                        amount of each consideration component must be
                 *                        zero for a match operation to be considered valid.
                 * @param orderHashes     An array of order hashes for each order.
                 * @param recipient       The intended recipient for all items that do not
                 *                        already have a designated recipient and are not
                 *                        used as part of a provided fulfillment.
                 * @param containsNonOpen A boolean indicating whether any restricted or
                 *                        contract orders are present within the provided
                 *                        array of advanced orders.
                 *
                 * @return executions An array of elements indicating the sequence of
                 *                    transfers performed as part of matching the given
                 *                    orders.
                 */
                function _fulfillAdvancedOrders(
                    AdvancedOrder[] memory advancedOrders,
                    Fulfillment[] memory fulfillments,
                    bytes32[] memory orderHashes,
                    address recipient,
                    bool containsNonOpen
                ) internal returns (Execution[] memory executions) {
                    // Retrieve fulfillments array length and place on the stack.
                    uint256 totalFulfillments = fulfillments.length;
                    // Allocate executions by fulfillment and apply them to each execution.
                    executions = new Execution[](totalFulfillments);
                    // Skip overflow checks as all for loops are indexed starting at zero.
                    unchecked {
                        // Track number of filtered executions.
                        uint256 totalFilteredExecutions = 0;
                        // Iterate over each fulfillment.
                        for (uint256 i = 0; i < totalFulfillments; ++i) {
                            /// Retrieve the fulfillment in question.
                            Fulfillment memory fulfillment = fulfillments[i];
                            // Derive the execution corresponding with the fulfillment.
                            Execution memory execution = _applyFulfillment(
                                advancedOrders,
                                fulfillment.offerComponents,
                                fulfillment.considerationComponents,
                                i
                            );
                            // If the execution is filterable...
                            if (_isFilterableExecution(execution)) {
                                // Increment total filtered executions.
                                ++totalFilteredExecutions;
                            } else {
                                // Otherwise, assign the execution to the executions array.
                                executions[i - totalFilteredExecutions] = execution;
                            }
                        }
                        // If some number of executions have been filtered...
                        if (totalFilteredExecutions != 0) {
                            // reduce the total length of the executions array.
                            assembly {
                                mstore(
                                    executions,
                                    sub(mload(executions), totalFilteredExecutions)
                                )
                            }
                        }
                    }
                    // Perform final checks and execute orders.
                    _performFinalChecksAndExecuteOrders(
                        advancedOrders,
                        executions,
                        orderHashes,
                        recipient,
                        containsNonOpen
                    );
                    // Return the executions array.
                    return executions;
                }
                /**
                 * @dev Internal pure function to determine whether a given execution is
                 *      filterable and may be removed from the executions array. The offerer
                 *      and the recipient must be the same address and the item type cannot
                 *      indicate a native token transfer.
                 *
                 * @param execution The execution to check for filterability.
                 *
                 * @return filterable A boolean indicating whether the execution in question
                 *                    can be filtered from the executions array.
                 */
                function _isFilterableExecution(
                    Execution memory execution
                ) internal pure returns (bool filterable) {
                    // Utilize assembly to efficiently determine if execution is filterable.
                    assembly {
                        // Retrieve the received item referenced by the execution.
                        let item := mload(execution)
                        // Determine whether the execution is filterable.
                        filterable := and(
                            // Determine if offerer and recipient are the same address.
                            eq(
                                // Retrieve the recipient's address from the received item.
                                mload(add(item, ReceivedItem_recipient_offset)),
                                // Retrieve the offerer's address from the execution.
                                mload(add(execution, Execution_offerer_offset))
                            ),
                            // Determine if received item's item type is non-zero, thereby
                            // indicating that the execution does not involve native tokens.
                            iszero(iszero(mload(item)))
                        )
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.13;
            /*
             * -------------------------- Disambiguation & Other Notes ---------------------
             *    - The term "head" is used as it is in the documentation for ABI encoding,
             *      but only in reference to dynamic types, i.e. it always refers to the
             *      offset or pointer to the body of a dynamic type. In calldata, the head
             *      is always an offset (relative to the parent object), while in memory,
             *      the head is always the pointer to the body. More information found here:
             *      https://docs.soliditylang.org/en/v0.8.17/abi-spec.html#argument-encoding
             *        - Note that the length of an array is separate from and precedes the
             *          head of the array.
             *
             *    - The term "body" is used in place of the term "head" used in the ABI
             *      documentation. It refers to the start of the data for a dynamic type,
             *      e.g. the first word of a struct or the first word of the first element
             *      in an array.
             *
             *    - The term "pointer" is used to describe the absolute position of a value
             *      and never an offset relative to another value.
             *        - The suffix "_ptr" refers to a memory pointer.
             *        - The suffix "_cdPtr" refers to a calldata pointer.
             *
             *    - The term "offset" is used to describe the position of a value relative
             *      to some parent value. For example, OrderParameters_conduit_offset is the
             *      offset to the "conduit" value in the OrderParameters struct relative to
             *      the start of the body.
             *        - Note: Offsets are used to derive pointers.
             *
             *    - Some structs have pointers defined for all of their fields in this file.
             *      Lines which are commented out are fields that are not used in the
             *      codebase but have been left in for readability.
             */
            // Declare constants for name, version, and reentrancy sentinel values.
            // Name is right padded, so it touches the length which is left padded. This
            // enables writing both values at once. Length goes at byte 95 in memory, and
            // name fills bytes 96-109, so both values can be written left-padded to 77.
            uint256 constant NameLengthPtr = 0x4D;
            uint256 constant NameWithLength = 0x0d436F6E73696465726174696F6E;
            uint256 constant information_version_offset = 0;
            uint256 constant information_version_cd_offset = 0x60;
            uint256 constant information_domainSeparator_offset = 0x20;
            uint256 constant information_conduitController_offset = 0x40;
            uint256 constant information_versionLengthPtr = 0x63;
            uint256 constant information_versionWithLength = 0x03312e35; // 1.5
            uint256 constant information_length = 0xa0;
            uint256 constant _NOT_ENTERED = 1;
            uint256 constant _ENTERED = 2;
            uint256 constant _ENTERED_AND_ACCEPTING_NATIVE_TOKENS = 3;
            uint256 constant Offset_fulfillAdvancedOrder_criteriaResolvers = 0x20;
            uint256 constant Offset_fulfillAvailableOrders_offerFulfillments = 0x20;
            uint256 constant Offset_fulfillAvailableOrders_considerationFulfillments = 0x40;
            uint256 constant Offset_fulfillAvailableAdvancedOrders_criteriaResolvers = 0x20;
            uint256 constant Offset_fulfillAvailableAdvancedOrders_offerFulfillments = 0x40;
            uint256 constant Offset_fulfillAvailableAdvancedOrders_cnsdrationFlflmnts = (
                0x60
            );
            uint256 constant Offset_matchOrders_fulfillments = 0x20;
            uint256 constant Offset_matchAdvancedOrders_criteriaResolvers = 0x20;
            uint256 constant Offset_matchAdvancedOrders_fulfillments = 0x40;
            // Common Offsets
            // Offsets for identically positioned fields shared by:
            // OfferItem, ConsiderationItem, SpentItem, ReceivedItem
            uint256 constant Selector_length = 0x4;
            uint256 constant Common_token_offset = 0x20;
            uint256 constant Common_identifier_offset = 0x40;
            uint256 constant Common_amount_offset = 0x60;
            uint256 constant Common_endAmount_offset = 0x80;
            uint256 constant SpentItem_size = 0x80;
            uint256 constant SpentItem_size_shift = 0x7;
            uint256 constant OfferItem_size = 0xa0;
            uint256 constant OfferItem_size_with_length = 0xc0;
            uint256 constant ReceivedItem_size_excluding_recipient = 0x80;
            uint256 constant ReceivedItem_size = 0xa0;
            uint256 constant ReceivedItem_amount_offset = 0x60;
            uint256 constant ReceivedItem_recipient_offset = 0x80;
            uint256 constant ReceivedItem_CommonParams_size = 0x60;
            uint256 constant ConsiderationItem_size = 0xc0;
            uint256 constant ConsiderationItem_size_with_length = 0xe0;
            uint256 constant ConsiderationItem_recipient_offset = 0xa0;
            // Store the same constant in an abbreviated format for a line length fix.
            uint256 constant ConsiderItem_recipient_offset = 0xa0;
            uint256 constant Execution_offerer_offset = 0x20;
            uint256 constant Execution_conduit_offset = 0x40;
            // uint256 constant OrderParameters_offerer_offset = 0x00;
            uint256 constant OrderParameters_zone_offset = 0x20;
            uint256 constant OrderParameters_offer_head_offset = 0x40;
            uint256 constant OrderParameters_consideration_head_offset = 0x60;
            // uint256 constant OrderParameters_orderType_offset = 0x80;
            uint256 constant OrderParameters_startTime_offset = 0xa0;
            uint256 constant OrderParameters_endTime_offset = 0xc0;
            uint256 constant OrderParameters_zoneHash_offset = 0xe0;
            // uint256 constant OrderParameters_salt_offset = 0x100;
            uint256 constant OrderParameters_conduit_offset = 0x120;
            uint256 constant OrderParameters_counter_offset = 0x140;
            uint256 constant Fulfillment_itemIndex_offset = 0x20;
            uint256 constant AdvancedOrder_head_size = 0xa0;
            uint256 constant AdvancedOrder_numerator_offset = 0x20;
            uint256 constant AdvancedOrder_denominator_offset = 0x40;
            uint256 constant AdvancedOrder_signature_offset = 0x60;
            uint256 constant AdvancedOrder_extraData_offset = 0x80;
            uint256 constant OrderStatus_ValidatedAndNotCancelled = 1;
            uint256 constant OrderStatus_filledNumerator_offset = 0x10;
            uint256 constant OrderStatus_filledDenominator_offset = 0x88;
            uint256 constant ThirtyOneBytes = 0x1f;
            uint256 constant OneWord = 0x20;
            uint256 constant TwoWords = 0x40;
            uint256 constant ThreeWords = 0x60;
            uint256 constant FourWords = 0x80;
            uint256 constant FiveWords = 0xa0;
            uint256 constant OneWordShift = 0x5;
            uint256 constant TwoWordsShift = 0x6;
            uint256 constant SixtyThreeBytes = 0x3f;
            uint256 constant OnlyFullWordMask = 0xffffffe0;
            uint256 constant FreeMemoryPointerSlot = 0x40;
            uint256 constant ZeroSlot = 0x60;
            uint256 constant DefaultFreeMemoryPointer = 0x80;
            uint256 constant Slot0x80 = 0x80;
            uint256 constant Slot0xA0 = 0xa0;
            // uint256 constant BasicOrder_endAmount_cdPtr = 0x104;
            uint256 constant BasicOrder_common_params_size = 0xa0;
            uint256 constant BasicOrder_considerationHashesArray_ptr = 0x160;
            uint256 constant BasicOrder_receivedItemByteMap = (
                0x0000010102030000000000000000000000000000000000000000000000000000
            );
            uint256 constant BasicOrder_offeredItemByteMap = (
                0x0203020301010000000000000000000000000000000000000000000000000000
            );
            bytes32 constant OrdersMatchedTopic0 = (
                0x4b9f2d36e1b4c93de62cc077b00b1a91d84b6c31b4a14e012718dcca230689e7
            );
            uint256 constant EIP712_Order_size = 0x180;
            uint256 constant EIP712_OfferItem_size = 0xc0;
            uint256 constant EIP712_ConsiderationItem_size = 0xe0;
            uint256 constant AdditionalRecipient_size = 0x40;
            uint256 constant AdditionalRecipient_size_shift = 0x6;
            uint256 constant EIP712_DomainSeparator_offset = 0x02;
            uint256 constant EIP712_OrderHash_offset = 0x22;
            uint256 constant EIP712_DigestPayload_size = 0x42;
            uint256 constant EIP712_domainData_nameHash_offset = 0x20;
            uint256 constant EIP712_domainData_versionHash_offset = 0x40;
            uint256 constant EIP712_domainData_chainId_offset = 0x60;
            uint256 constant EIP712_domainData_verifyingContract_offset = 0x80;
            uint256 constant EIP712_domainData_size = 0xa0;
            // Minimum BulkOrder proof size: 64 bytes for signature + 3 for key + 32 for 1
            // sibling. Maximum BulkOrder proof size: 65 bytes for signature + 3 for key +
            // 768 for 24 siblings.
            uint256 constant BulkOrderProof_minSize = 0x63;
            uint256 constant BulkOrderProof_rangeSize = 0x2e2;
            uint256 constant BulkOrderProof_lengthAdjustmentBeforeMask = 0x1d;
            uint256 constant BulkOrderProof_lengthRangeAfterMask = 0x2;
            uint256 constant BulkOrderProof_keyShift = 0xe8;
            uint256 constant BulkOrderProof_keySize = 0x3;
            uint256 constant BulkOrder_Typehash_Height_One = (
                0x3ca2711d29384747a8f61d60aad3c450405f7aaff5613541dee28df2d6986d32
            );
            uint256 constant BulkOrder_Typehash_Height_Two = (
                0xbf8e29b89f29ed9b529c154a63038ffca562f8d7cd1e2545dda53a1b582dde30
            );
            uint256 constant BulkOrder_Typehash_Height_Three = (
                0x53c6f6856e13104584dd0797ca2b2779202dc2597c6066a42e0d8fe990b0024d
            );
            uint256 constant BulkOrder_Typehash_Height_Four = (
                0xa02eb7ff164c884e5e2c336dc85f81c6a93329d8e9adf214b32729b894de2af1
            );
            uint256 constant BulkOrder_Typehash_Height_Five = (
                0x39c9d33c18e050dda0aeb9a8086fb16fc12d5d64536780e1da7405a800b0b9f6
            );
            uint256 constant BulkOrder_Typehash_Height_Six = (
                0x1c19f71958cdd8f081b4c31f7caf5c010b29d12950be2fa1c95070dc47e30b55
            );
            uint256 constant BulkOrder_Typehash_Height_Seven = (
                0xca74fab2fece9a1d58234a274220ad05ca096a92ef6a1ca1750b9d90c948955c
            );
            uint256 constant BulkOrder_Typehash_Height_Eight = (
                0x7ff98d9d4e55d876c5cfac10b43c04039522f3ddfb0ea9bfe70c68cfb5c7cc14
            );
            uint256 constant BulkOrder_Typehash_Height_Nine = (
                0xbed7be92d41c56f9e59ac7a6272185299b815ddfabc3f25deb51fe55fe2f9e8a
            );
            uint256 constant BulkOrder_Typehash_Height_Ten = (
                0xd1d97d1ef5eaa37a4ee5fbf234e6f6d64eb511eb562221cd7edfbdde0848da05
            );
            uint256 constant BulkOrder_Typehash_Height_Eleven = (
                0x896c3f349c4da741c19b37fec49ed2e44d738e775a21d9c9860a69d67a3dae53
            );
            uint256 constant BulkOrder_Typehash_Height_Twelve = (
                0xbb98d87cc12922b83759626c5f07d72266da9702d19ffad6a514c73a89002f5f
            );
            uint256 constant BulkOrder_Typehash_Height_Thirteen = (
                0xe6ae19322608dd1f8a8d56aab48ed9c28be489b689f4b6c91268563efc85f20e
            );
            uint256 constant BulkOrder_Typehash_Height_Fourteen = (
                0x6b5b04cbae4fcb1a9d78e7b2dfc51a36933d023cf6e347e03d517b472a852590
            );
            uint256 constant BulkOrder_Typehash_Height_Fifteen = (
                0xd1eb68309202b7106b891e109739dbbd334a1817fe5d6202c939e75cf5e35ca9
            );
            uint256 constant BulkOrder_Typehash_Height_Sixteen = (
                0x1da3eed3ecef6ebaa6e5023c057ec2c75150693fd0dac5c90f4a142f9879fde8
            );
            uint256 constant BulkOrder_Typehash_Height_Seventeen = (
                0xeee9a1392aa395c7002308119a58f2582777a75e54e0c1d5d5437bd2e8bf6222
            );
            uint256 constant BulkOrder_Typehash_Height_Eighteen = (
                0xc3939feff011e53ab8c35ca3370aad54c5df1fc2938cd62543174fa6e7d85877
            );
            uint256 constant BulkOrder_Typehash_Height_Nineteen = (
                0x0efca7572ac20f5ae84db0e2940674f7eca0a4726fa1060ffc2d18cef54b203d
            );
            uint256 constant BulkOrder_Typehash_Height_Twenty = (
                0x5a4f867d3d458dabecad65f6201ceeaba0096df2d0c491cc32e6ea4e64350017
            );
            uint256 constant BulkOrder_Typehash_Height_TwentyOne = (
                0x80987079d291feebf21c2230e69add0f283cee0b8be492ca8050b4185a2ff719
            );
            uint256 constant BulkOrder_Typehash_Height_TwentyTwo = (
                0x3bd8cff538aba49a9c374c806d277181e9651624b3e31111bc0624574f8bca1d
            );
            uint256 constant BulkOrder_Typehash_Height_TwentyThree = (
                0x5d6a3f098a0bc373f808c619b1bb4028208721b3c4f8d6bc8a874d659814eb76
            );
            uint256 constant BulkOrder_Typehash_Height_TwentyFour = (
                0x1d51df90cba8de7637ca3e8fe1e3511d1dc2f23487d05dbdecb781860c21ac1c
            );
            uint256 constant receivedItemsHash_ptr = 0x60;
            /*
             *  Memory layout in _prepareBasicFulfillmentFromCalldata of
             *  data for OrderFulfilled
             *
             *   event OrderFulfilled(
             *     bytes32 orderHash,
             *     address indexed offerer,
             *     address indexed zone,
             *     address fulfiller,
             *     SpentItem[] offer,
             *       > (itemType, token, id, amount)
             *     ReceivedItem[] consideration
             *       > (itemType, token, id, amount, recipient)
             *   )
             *
             *  - 0x00: orderHash
             *  - 0x20: fulfiller
             *  - 0x40: offer offset (0x80)
             *  - 0x60: consideration offset (0x120)
             *  - 0x80: offer.length (1)
             *  - 0xa0: offerItemType
             *  - 0xc0: offerToken
             *  - 0xe0: offerIdentifier
             *  - 0x100: offerAmount
             *  - 0x120: consideration.length (1 + additionalRecipients.length)
             *  - 0x140: considerationItemType
             *  - 0x160: considerationToken
             *  - 0x180: considerationIdentifier
             *  - 0x1a0: considerationAmount
             *  - 0x1c0: considerationRecipient
             *  - ...
             */
            // Minimum length of the OrderFulfilled event data.
            // Must be added to the size of the ReceivedItem array for additionalRecipients
            // (0xa0 * additionalRecipients.length) to calculate full size of the buffer.
            uint256 constant OrderFulfilled_baseSize = 0x1e0;
            uint256 constant OrderFulfilled_selector = (
                0x9d9af8e38d66c62e2c12f0225249fd9d721c54b83f48d9352c97c6cacdcb6f31
            );
            // Minimum offset in memory to OrderFulfilled event data.
            // Must be added to the size of the EIP712 hash array for additionalRecipients
            // (32 * additionalRecipients.length) to calculate the pointer to event data.
            uint256 constant OrderFulfilled_baseOffset = 0x180;
            uint256 constant OrderFulfilled_consideration_length_baseOffset = 0x2a0;
            uint256 constant OrderFulfilled_offer_length_baseOffset = 0x200;
            // Related constants used for restricted order checks on basic orders.
            uint256 constant OrderFulfilled_baseDataSize = 0x160;
            // uint256 constant ValidateOrder_offerDataOffset = 0x184;
            // uint256 constant RatifyOrder_offerDataOffset = 0xc4;
            // uint256 constant OrderFulfilled_orderHash_offset = 0x00;
            uint256 constant OrderFulfilled_fulfiller_offset = 0x20;
            uint256 constant OrderFulfilled_offer_head_offset = 0x40;
            uint256 constant OrderFulfilled_offer_body_offset = 0x80;
            uint256 constant OrderFulfilled_consideration_head_offset = 0x60;
            uint256 constant OrderFulfilled_consideration_body_offset = 0x120;
            // BasicOrderParameters
            uint256 constant BasicOrder_parameters_cdPtr = 0x04;
            uint256 constant BasicOrder_considerationToken_cdPtr = 0x24;
            uint256 constant BasicOrder_considerationIdentifier_cdPtr = 0x44;
            uint256 constant BasicOrder_considerationAmount_cdPtr = 0x64;
            uint256 constant BasicOrder_offerer_cdPtr = 0x84;
            uint256 constant BasicOrder_zone_cdPtr = 0xa4;
            uint256 constant BasicOrder_offerToken_cdPtr = 0xc4;
            uint256 constant BasicOrder_offerIdentifier_cdPtr = 0xe4;
            uint256 constant BasicOrder_offerAmount_cdPtr = 0x104;
            uint256 constant BasicOrder_basicOrderType_cdPtr = 0x124;
            uint256 constant BasicOrder_startTime_cdPtr = 0x144;
            uint256 constant BasicOrder_endTime_cdPtr = 0x164;
            // uint256 constant BasicOrder_zoneHash_cdPtr = 0x184;
            // uint256 constant BasicOrder_salt_cdPtr = 0x1a4;
            uint256 constant BasicOrder_offererConduit_cdPtr = 0x1c4;
            uint256 constant BasicOrder_fulfillerConduit_cdPtr = 0x1e4;
            uint256 constant BasicOrder_totalOriginalAdditionalRecipients_cdPtr = 0x204;
            uint256 constant BasicOrder_additionalRecipients_head_cdPtr = 0x224;
            uint256 constant BasicOrder_signature_cdPtr = 0x244;
            uint256 constant BasicOrder_additionalRecipients_length_cdPtr = 0x264;
            uint256 constant BasicOrder_additionalRecipients_data_cdPtr = 0x284;
            uint256 constant BasicOrder_parameters_ptr = 0x20;
            uint256 constant BasicOrder_basicOrderType_range = 0x18; // 24 values
            /*
             *  Memory layout in _prepareBasicFulfillmentFromCalldata of
             *  EIP712 data for ConsiderationItem
             *   - 0x80: ConsiderationItem EIP-712 typehash (constant)
             *   - 0xa0: itemType
             *   - 0xc0: token
             *   - 0xe0: identifier
             *   - 0x100: startAmount
             *   - 0x120: endAmount
             *   - 0x140: recipient
             */
            uint256 constant BasicOrder_considerationItem_typeHash_ptr = 0x80; // memoryPtr
            uint256 constant BasicOrder_considerationItem_itemType_ptr = 0xa0;
            uint256 constant BasicOrder_considerationItem_token_ptr = 0xc0;
            uint256 constant BasicOrder_considerationItem_identifier_ptr = 0xe0;
            uint256 constant BasicOrder_considerationItem_startAmount_ptr = 0x100;
            uint256 constant BasicOrder_considerationItem_endAmount_ptr = 0x120;
            // uint256 constant BasicOrder_considerationItem_recipient_ptr = 0x140;
            /*
             *  Memory layout in _prepareBasicFulfillmentFromCalldata of
             *  EIP712 data for OfferItem
             *   - 0x80:  OfferItem EIP-712 typehash (constant)
             *   - 0xa0:  itemType
             *   - 0xc0:  token
             *   - 0xe0:  identifier (reused for offeredItemsHash)
             *   - 0x100: startAmount
             *   - 0x120: endAmount
             */
            uint256 constant BasicOrder_offerItem_typeHash_ptr = 0x80;
            uint256 constant BasicOrder_offerItem_itemType_ptr = 0xa0;
            uint256 constant BasicOrder_offerItem_token_ptr = 0xc0;
            // uint256 constant BasicOrder_offerItem_identifier_ptr = 0xe0;
            // uint256 constant BasicOrder_offerItem_startAmount_ptr = 0x100;
            uint256 constant BasicOrder_offerItem_endAmount_ptr = 0x120;
            /*
             *  Memory layout in _prepareBasicFulfillmentFromCalldata of
             *  EIP712 data for Order
             *   - 0x80:   Order EIP-712 typehash (constant)
             *   - 0xa0:   orderParameters.offerer
             *   - 0xc0:   orderParameters.zone
             *   - 0xe0:   keccak256(abi.encodePacked(offerHashes))
             *   - 0x100:  keccak256(abi.encodePacked(considerationHashes))
             *   - 0x120:  orderType
             *   - 0x140:  startTime
             *   - 0x160:  endTime
             *   - 0x180:  zoneHash
             *   - 0x1a0:  salt
             *   - 0x1c0:  conduit
             *   - 0x1e0:  _counters[orderParameters.offerer] (from storage)
             */
            uint256 constant BasicOrder_order_typeHash_ptr = 0x80;
            uint256 constant BasicOrder_order_offerer_ptr = 0xa0;
            // uint256 constant BasicOrder_order_zone_ptr = 0xc0;
            uint256 constant BasicOrder_order_offerHashes_ptr = 0xe0;
            uint256 constant BasicOrder_order_considerationHashes_ptr = 0x100;
            uint256 constant BasicOrder_order_orderType_ptr = 0x120;
            uint256 constant BasicOrder_order_startTime_ptr = 0x140;
            // uint256 constant BasicOrder_order_endTime_ptr = 0x160;
            // uint256 constant BasicOrder_order_zoneHash_ptr = 0x180;
            // uint256 constant BasicOrder_order_salt_ptr = 0x1a0;
            // uint256 constant BasicOrder_order_conduitKey_ptr = 0x1c0;
            uint256 constant BasicOrder_order_counter_ptr = 0x1e0;
            uint256 constant BasicOrder_additionalRecipients_head_ptr = 0x240;
            uint256 constant BasicOrder_signature_ptr = 0x260;
            uint256 constant BasicOrder_startTimeThroughZoneHash_size = 0x60;
            uint256 constant ContractOrder_orderHash_offerer_shift = 0x60;
            uint256 constant Counter_blockhash_shift = 0x80;
            // Signature-related
            bytes32 constant EIP2098_allButHighestBitMask = (
                0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
            );
            bytes32 constant ECDSA_twentySeventhAndTwentyEighthBytesSet = (
                0x0000000000000000000000000000000000000000000000000000000101000000
            );
            uint256 constant ECDSA_MaxLength = 65;
            uint256 constant ECDSA_signature_s_offset = 0x40;
            uint256 constant ECDSA_signature_v_offset = 0x60;
            bytes32 constant EIP1271_isValidSignature_selector = (
                0x1626ba7e00000000000000000000000000000000000000000000000000000000
            );
            uint256 constant EIP1271_isValidSignature_digest_negativeOffset = 0x40;
            uint256 constant EIP1271_isValidSignature_selector_negativeOffset = 0x44;
            uint256 constant EIP1271_isValidSignature_calldata_baseLength = 0x64;
            uint256 constant EIP1271_isValidSignature_signature_head_offset = 0x40;
            uint256 constant EIP_712_PREFIX = (
                0x1901000000000000000000000000000000000000000000000000000000000000
            );
            uint256 constant ExtraGasBuffer = 0x20;
            uint256 constant CostPerWord = 0x3;
            uint256 constant MemoryExpansionCoefficientShift = 0x9;
            uint256 constant Create2AddressDerivation_ptr = 0x0b;
            uint256 constant Create2AddressDerivation_length = 0x55;
            uint256 constant MaskOverByteTwelve = (
                0x0000000000000000000000ff0000000000000000000000000000000000000000
            );
            uint256 constant MaskOverLastTwentyBytes = (
                0x000000000000000000000000ffffffffffffffffffffffffffffffffffffffff
            );
            uint256 constant AddressDirtyUpperBitThreshold = (
                0x0000000000000000000000010000000000000000000000000000000000000000
            );
            uint256 constant MaskOverFirstFourBytes = (
                0xffffffff00000000000000000000000000000000000000000000000000000000
            );
            uint256 constant Conduit_execute_signature = (
                0x4ce34aa200000000000000000000000000000000000000000000000000000000
            );
            uint256 constant MaxUint8 = 0xff;
            uint256 constant MaxUint120 = 0xffffffffffffffffffffffffffffff;
            uint256 constant Conduit_execute_ConduitTransfer_ptr = 0x20;
            uint256 constant Conduit_execute_ConduitTransfer_length = 0x01;
            uint256 constant Conduit_execute_ConduitTransfer_offset_ptr = 0x04;
            uint256 constant Conduit_execute_ConduitTransfer_length_ptr = 0x24;
            uint256 constant Conduit_execute_transferItemType_ptr = 0x44;
            uint256 constant Conduit_execute_transferToken_ptr = 0x64;
            uint256 constant Conduit_execute_transferFrom_ptr = 0x84;
            uint256 constant Conduit_execute_transferTo_ptr = 0xa4;
            uint256 constant Conduit_execute_transferIdentifier_ptr = 0xc4;
            uint256 constant Conduit_execute_transferAmount_ptr = 0xe4;
            uint256 constant OneConduitExecute_size = 0x104;
            // Sentinel value to indicate that the conduit accumulator is not armed.
            uint256 constant AccumulatorDisarmed = 0x20;
            uint256 constant AccumulatorArmed = 0x40;
            uint256 constant Accumulator_conduitKey_ptr = 0x20;
            uint256 constant Accumulator_selector_ptr = 0x40;
            uint256 constant Accumulator_array_offset_ptr = 0x44;
            uint256 constant Accumulator_array_length_ptr = 0x64;
            uint256 constant Accumulator_itemSizeOffsetDifference = 0x3c;
            uint256 constant Accumulator_array_offset = 0x20;
            uint256 constant Conduit_transferItem_size = 0xc0;
            uint256 constant Conduit_transferItem_token_ptr = 0x20;
            uint256 constant Conduit_transferItem_from_ptr = 0x40;
            uint256 constant Conduit_transferItem_to_ptr = 0x60;
            uint256 constant Conduit_transferItem_identifier_ptr = 0x80;
            uint256 constant Conduit_transferItem_amount_ptr = 0xa0;
            uint256 constant Ecrecover_precompile = 0x1;
            uint256 constant Ecrecover_args_size = 0x80;
            uint256 constant Signature_lower_v = 27;
            // Bitmask that only gives a non-zero value if masked with a non-match selector.
            uint256 constant NonMatchSelector_MagicMask = (
                0x4000000000000000000000000000000000000000000000000000000000
            );
            // First bit indicates that a NATIVE offer items has been used and the 231st bit
            // indicates that a non match selector has been called.
            uint256 constant NonMatchSelector_InvalidErrorValue = (
                0x4000000000000000000000000000000000000000000000000000000001
            );
            /**
             * @dev Selector and offsets for generateOrder
             *
             * function generateOrder(
             *   address fulfiller,
             *   SpentItem[] calldata minimumReceived,
             *   SpentItem[] calldata maximumSpent,
             *   bytes calldata context
             * )
             */
            uint256 constant generateOrder_selector = 0x98919765;
            uint256 constant generateOrder_selector_offset = 0x1c;
            uint256 constant generateOrder_head_offset = 0x04;
            uint256 constant generateOrder_minimumReceived_head_offset = 0x20;
            uint256 constant generateOrder_maximumSpent_head_offset = 0x40;
            uint256 constant generateOrder_context_head_offset = 0x60;
            uint256 constant generateOrder_base_tail_offset = 0x80;
            uint256 constant generateOrder_maximum_returndatasize = 0xffff;
            uint256 constant ratifyOrder_selector = 0xf4dd92ce;
            uint256 constant ratifyOrder_selector_offset = 0x1c;
            uint256 constant ratifyOrder_head_offset = 0x04;
            // uint256 constant ratifyOrder_offer_head_offset = 0x00;
            uint256 constant ratifyOrder_consideration_head_offset = 0x20;
            uint256 constant ratifyOrder_context_head_offset = 0x40;
            uint256 constant ratifyOrder_orderHashes_head_offset = 0x60;
            uint256 constant ratifyOrder_contractNonce_offset = 0x80;
            uint256 constant ratifyOrder_base_tail_offset = 0xa0;
            uint256 constant validateOrder_selector = 0x17b1f942;
            uint256 constant validateOrder_selector_offset = 0x1c;
            uint256 constant validateOrder_head_offset = 0x04;
            uint256 constant validateOrder_zoneParameters_offset = 0x20;
            // uint256 constant ZoneParameters_orderHash_offset = 0x00;
            uint256 constant ZoneParameters_fulfiller_offset = 0x20;
            uint256 constant ZoneParameters_offerer_offset = 0x40;
            uint256 constant ZoneParameters_offer_head_offset = 0x60;
            uint256 constant ZoneParameters_consideration_head_offset = 0x80;
            uint256 constant ZoneParameters_extraData_head_offset = 0xa0;
            uint256 constant ZoneParameters_orderHashes_head_offset = 0xc0;
            uint256 constant ZoneParameters_startTime_offset = 0xe0;
            uint256 constant ZoneParameters_endTime_offset = 0x100;
            uint256 constant ZoneParameters_zoneHash_offset = 0x120;
            uint256 constant ZoneParameters_base_tail_offset = 0x140;
            uint256 constant ZoneParameters_selectorAndPointer_length = 0x24;
            uint256 constant ZoneParameters_basicOrderFixedElements_length = 0x64;
            // ConsiderationDecoder Constants
            uint256 constant OrderParameters_head_size = 0x0160;
            uint256 constant OrderParameters_totalOriginalConsiderationItems_offset = (
                0x0140
            );
            uint256 constant AdvancedOrderPlusOrderParameters_head_size = 0x0200;
            uint256 constant Order_signature_offset = 0x20;
            uint256 constant Order_head_size = 0x40;
            uint256 constant AdvancedOrder_fixed_segment_0 = 0x40;
            uint256 constant CriteriaResolver_head_size = 0xa0;
            uint256 constant CriteriaResolver_fixed_segment_0 = 0x80;
            uint256 constant CriteriaResolver_criteriaProof_offset = 0x80;
            uint256 constant FulfillmentComponent_mem_tail_size = 0x40;
            uint256 constant FulfillmentComponent_mem_tail_size_shift = 0x6;
            uint256 constant Fulfillment_head_size = 0x40;
            uint256 constant Fulfillment_considerationComponents_offset = 0x20;
            uint256 constant OrderComponents_OrderParameters_common_head_size = 0x0140;
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.13;
            import {
                AdvancedOrder,
                BasicOrderParameters,
                CriteriaResolver,
                Execution,
                Fulfillment,
                FulfillmentComponent,
                Order,
                OrderComponents
            } from "../lib/ConsiderationStructs.sol";
            /**
             * @title ConsiderationInterface
             * @author 0age
             * @custom:version 1.5
             * @notice Consideration is a generalized native token/ERC20/ERC721/ERC1155
             *         marketplace. It minimizes external calls to the greatest extent
             *         possible and provides lightweight methods for common routes as well
             *         as more flexible methods for composing advanced orders.
             *
             * @dev ConsiderationInterface contains all external function interfaces for
             *      Consideration.
             */
            interface ConsiderationInterface {
                /**
                 * @notice Fulfill an order offering an ERC721 token by supplying Ether (or
                 *         the native token for the given chain) as consideration for the
                 *         order. An arbitrary number of "additional recipients" may also be
                 *         supplied which will each receive native tokens from the fulfiller
                 *         as consideration.
                 *
                 * @param parameters Additional information on the fulfilled order. Note
                 *                   that the offerer must first approve this contract (or
                 *                   their preferred conduit if indicated by the order) for
                 *                   their offered ERC721 token to be transferred.
                 *
                 * @return fulfilled A boolean indicating whether the order has been
                 *                   successfully fulfilled.
                 */
                function fulfillBasicOrder(
                    BasicOrderParameters calldata parameters
                ) external payable returns (bool fulfilled);
                /**
                 * @notice Fulfill an order with an arbitrary number of items for offer and
                 *         consideration. Note that this function does not support
                 *         criteria-based orders or partial filling of orders (though
                 *         filling the remainder of a partially-filled order is supported).
                 *
                 * @param order               The order to fulfill. Note that both the
                 *                            offerer and the fulfiller must first approve
                 *                            this contract (or the corresponding conduit if
                 *                            indicated) to transfer any relevant tokens on
                 *                            their behalf and that contracts must implement
                 *                            `onERC1155Received` to receive ERC1155 tokens
                 *                            as consideration.
                 * @param fulfillerConduitKey A bytes32 value indicating what conduit, if
                 *                            any, to source the fulfiller's token approvals
                 *                            from. The zero hash signifies that no conduit
                 *                            should be used, with direct approvals set on
                 *                            Consideration.
                 *
                 * @return fulfilled A boolean indicating whether the order has been
                 *                   successfully fulfilled.
                 */
                function fulfillOrder(
                    Order calldata order,
                    bytes32 fulfillerConduitKey
                ) external payable returns (bool fulfilled);
                /**
                 * @notice Fill an order, fully or partially, with an arbitrary number of
                 *         items for offer and consideration alongside criteria resolvers
                 *         containing specific token identifiers and associated proofs.
                 *
                 * @param advancedOrder       The order to fulfill along with the fraction
                 *                            of the order to attempt to fill. Note that
                 *                            both the offerer and the fulfiller must first
                 *                            approve this contract (or their preferred
                 *                            conduit if indicated by the order) to transfer
                 *                            any relevant tokens on their behalf and that
                 *                            contracts must implement `onERC1155Received`
                 *                            to receive ERC1155 tokens as consideration.
                 *                            Also note that all offer and consideration
                 *                            components must have no remainder after
                 *                            multiplication of the respective amount with
                 *                            the supplied fraction for the partial fill to
                 *                            be considered valid.
                 * @param criteriaResolvers   An array where each element contains a
                 *                            reference to a specific offer or
                 *                            consideration, a token identifier, and a proof
                 *                            that the supplied token identifier is
                 *                            contained in the merkle root held by the item
                 *                            in question's criteria element. Note that an
                 *                            empty criteria indicates that any
                 *                            (transferable) token identifier on the token
                 *                            in question is valid and that no associated
                 *                            proof needs to be supplied.
                 * @param fulfillerConduitKey A bytes32 value indicating what conduit, if
                 *                            any, to source the fulfiller's token approvals
                 *                            from. The zero hash signifies that no conduit
                 *                            should be used, with direct approvals set on
                 *                            Consideration.
                 * @param recipient           The intended recipient for all received items,
                 *                            with `address(0)` indicating that the caller
                 *                            should receive the items.
                 *
                 * @return fulfilled A boolean indicating whether the order has been
                 *                   successfully fulfilled.
                 */
                function fulfillAdvancedOrder(
                    AdvancedOrder calldata advancedOrder,
                    CriteriaResolver[] calldata criteriaResolvers,
                    bytes32 fulfillerConduitKey,
                    address recipient
                ) external payable returns (bool fulfilled);
                /**
                 * @notice Attempt to fill a group of orders, each with an arbitrary number
                 *         of items for offer and consideration. Any order that is not
                 *         currently active, has already been fully filled, or has been
                 *         cancelled will be omitted. Remaining offer and consideration
                 *         items will then be aggregated where possible as indicated by the
                 *         supplied offer and consideration component arrays and aggregated
                 *         items will be transferred to the fulfiller or to each intended
                 *         recipient, respectively. Note that a failing item transfer or an
                 *         issue with order formatting will cause the entire batch to fail.
                 *         Note that this function does not support criteria-based orders or
                 *         partial filling of orders (though filling the remainder of a
                 *         partially-filled order is supported).
                 *
                 * @param orders                    The orders to fulfill. Note that both
                 *                                  the offerer and the fulfiller must first
                 *                                  approve this contract (or the
                 *                                  corresponding conduit if indicated) to
                 *                                  transfer any relevant tokens on their
                 *                                  behalf and that contracts must implement
                 *                                  `onERC1155Received` to receive ERC1155
                 *                                  tokens as consideration.
                 * @param offerFulfillments         An array of FulfillmentComponent arrays
                 *                                  indicating which offer items to attempt
                 *                                  to aggregate when preparing executions.
                 * @param considerationFulfillments An array of FulfillmentComponent arrays
                 *                                  indicating which consideration items to
                 *                                  attempt to aggregate when preparing
                 *                                  executions.
                 * @param fulfillerConduitKey       A bytes32 value indicating what conduit,
                 *                                  if any, to source the fulfiller's token
                 *                                  approvals from. The zero hash signifies
                 *                                  that no conduit should be used, with
                 *                                  direct approvals set on this contract.
                 * @param maximumFulfilled          The maximum number of orders to fulfill.
                 *
                 * @return availableOrders An array of booleans indicating if each order
                 *                         with an index corresponding to the index of the
                 *                         returned boolean was fulfillable or not.
                 * @return executions      An array of elements indicating the sequence of
                 *                         transfers performed as part of matching the given
                 *                         orders. Note that unspent offer item amounts or
                 *                         native tokens will not be reflected as part of
                 *                         this array.
                 */
                function fulfillAvailableOrders(
                    Order[] calldata orders,
                    FulfillmentComponent[][] calldata offerFulfillments,
                    FulfillmentComponent[][] calldata considerationFulfillments,
                    bytes32 fulfillerConduitKey,
                    uint256 maximumFulfilled
                )
                    external
                    payable
                    returns (bool[] memory availableOrders, Execution[] memory executions);
                /**
                 * @notice Attempt to fill a group of orders, fully or partially, with an
                 *         arbitrary number of items for offer and consideration per order
                 *         alongside criteria resolvers containing specific token
                 *         identifiers and associated proofs. Any order that is not
                 *         currently active, has already been fully filled, or has been
                 *         cancelled will be omitted. Remaining offer and consideration
                 *         items will then be aggregated where possible as indicated by the
                 *         supplied offer and consideration component arrays and aggregated
                 *         items will be transferred to the fulfiller or to each intended
                 *         recipient, respectively. Note that a failing item transfer or an
                 *         issue with order formatting will cause the entire batch to fail.
                 *
                 * @param advancedOrders            The orders to fulfill along with the
                 *                                  fraction of those orders to attempt to
                 *                                  fill. Note that both the offerer and the
                 *                                  fulfiller must first approve this
                 *                                  contract (or their preferred conduit if
                 *                                  indicated by the order) to transfer any
                 *                                  relevant tokens on their behalf and that
                 *                                  contracts must implement
                 *                                  `onERC1155Received` to enable receipt of
                 *                                  ERC1155 tokens as consideration. Also
                 *                                  note that all offer and consideration
                 *                                  components must have no remainder after
                 *                                  multiplication of the respective amount
                 *                                  with the supplied fraction for an
                 *                                  order's partial fill amount to be
                 *                                  considered valid.
                 * @param criteriaResolvers         An array where each element contains a
                 *                                  reference to a specific offer or
                 *                                  consideration, a token identifier, and a
                 *                                  proof that the supplied token identifier
                 *                                  is contained in the merkle root held by
                 *                                  the item in question's criteria element.
                 *                                  Note that an empty criteria indicates
                 *                                  that any (transferable) token
                 *                                  identifier on the token in question is
                 *                                  valid and that no associated proof needs
                 *                                  to be supplied.
                 * @param offerFulfillments         An array of FulfillmentComponent arrays
                 *                                  indicating which offer items to attempt
                 *                                  to aggregate when preparing executions.
                 * @param considerationFulfillments An array of FulfillmentComponent arrays
                 *                                  indicating which consideration items to
                 *                                  attempt to aggregate when preparing
                 *                                  executions.
                 * @param fulfillerConduitKey       A bytes32 value indicating what conduit,
                 *                                  if any, to source the fulfiller's token
                 *                                  approvals from. The zero hash signifies
                 *                                  that no conduit should be used, with
                 *                                  direct approvals set on this contract.
                 * @param recipient                 The intended recipient for all received
                 *                                  items, with `address(0)` indicating that
                 *                                  the caller should receive the items.
                 * @param maximumFulfilled          The maximum number of orders to fulfill.
                 *
                 * @return availableOrders An array of booleans indicating if each order
                 *                         with an index corresponding to the index of the
                 *                         returned boolean was fulfillable or not.
                 * @return executions      An array of elements indicating the sequence of
                 *                         transfers performed as part of matching the given
                 *                         orders. Note that unspent offer item amounts or
                 *                         native tokens will not be reflected as part of
                 *                         this array.
                 */
                function fulfillAvailableAdvancedOrders(
                    AdvancedOrder[] calldata advancedOrders,
                    CriteriaResolver[] calldata criteriaResolvers,
                    FulfillmentComponent[][] calldata offerFulfillments,
                    FulfillmentComponent[][] calldata considerationFulfillments,
                    bytes32 fulfillerConduitKey,
                    address recipient,
                    uint256 maximumFulfilled
                )
                    external
                    payable
                    returns (bool[] memory availableOrders, Execution[] memory executions);
                /**
                 * @notice Match an arbitrary number of orders, each with an arbitrary
                 *         number of items for offer and consideration along with a set of
                 *         fulfillments allocating offer components to consideration
                 *         components. Note that this function does not support
                 *         criteria-based or partial filling of orders (though filling the
                 *         remainder of a partially-filled order is supported). Any unspent
                 *         offer item amounts or native tokens will be transferred to the
                 *         caller.
                 *
                 * @param orders       The orders to match. Note that both the offerer and
                 *                     fulfiller on each order must first approve this
                 *                     contract (or their conduit if indicated by the order)
                 *                     to transfer any relevant tokens on their behalf and
                 *                     each consideration recipient must implement
                 *                     `onERC1155Received` to enable ERC1155 token receipt.
                 * @param fulfillments An array of elements allocating offer components to
                 *                     consideration components. Note that each
                 *                     consideration component must be fully met for the
                 *                     match operation to be valid.
                 *
                 * @return executions An array of elements indicating the sequence of
                 *                    transfers performed as part of matching the given
                 *                    orders. Note that unspent offer item amounts or
                 *                    native tokens will not be reflected as part of this
                 *                    array.
                 */
                function matchOrders(
                    Order[] calldata orders,
                    Fulfillment[] calldata fulfillments
                ) external payable returns (Execution[] memory executions);
                /**
                 * @notice Match an arbitrary number of full or partial orders, each with an
                 *         arbitrary number of items for offer and consideration, supplying
                 *         criteria resolvers containing specific token identifiers and
                 *         associated proofs as well as fulfillments allocating offer
                 *         components to consideration components. Any unspent offer item
                 *         amounts will be transferred to the designated recipient (with the
                 *         null address signifying to use the caller) and any unspent native
                 *         tokens will be returned to the caller.
                 *
                 * @param orders            The advanced orders to match. Note that both the
                 *                          offerer and fulfiller on each order must first
                 *                          approve this contract (or a preferred conduit if
                 *                          indicated by the order) to transfer any relevant
                 *                          tokens on their behalf and each consideration
                 *                          recipient must implement `onERC1155Received` in
                 *                          order to receive ERC1155 tokens. Also note that
                 *                          the offer and consideration components for each
                 *                          order must have no remainder after multiplying
                 *                          the respective amount with the supplied fraction
                 *                          in order for the group of partial fills to be
                 *                          considered valid.
                 * @param criteriaResolvers An array where each element contains a reference
                 *                          to a specific order as well as that order's
                 *                          offer or consideration, a token identifier, and
                 *                          a proof that the supplied token identifier is
                 *                          contained in the order's merkle root. Note that
                 *                          an empty root indicates that any (transferable)
                 *                          token identifier is valid and that no associated
                 *                          proof needs to be supplied.
                 * @param fulfillments      An array of elements allocating offer components
                 *                          to consideration components. Note that each
                 *                          consideration component must be fully met in
                 *                          order for the match operation to be valid.
                 * @param recipient         The intended recipient for all unspent offer
                 *                          item amounts, or the caller if the null address
                 *                          is supplied.
                 *
                 * @return executions An array of elements indicating the sequence of
                 *                    transfers performed as part of matching the given
                 *                    orders. Note that unspent offer item amounts or native
                 *                    tokens will not be reflected as part of this array.
                 */
                function matchAdvancedOrders(
                    AdvancedOrder[] calldata orders,
                    CriteriaResolver[] calldata criteriaResolvers,
                    Fulfillment[] calldata fulfillments,
                    address recipient
                ) external payable returns (Execution[] memory executions);
                /**
                 * @notice Cancel an arbitrary number of orders. Note that only the offerer
                 *         or the zone of a given order may cancel it. Callers should ensure
                 *         that the intended order was cancelled by calling `getOrderStatus`
                 *         and confirming that `isCancelled` returns `true`.
                 *
                 * @param orders The orders to cancel.
                 *
                 * @return cancelled A boolean indicating whether the supplied orders have
                 *                   been successfully cancelled.
                 */
                function cancel(
                    OrderComponents[] calldata orders
                ) external returns (bool cancelled);
                /**
                 * @notice Validate an arbitrary number of orders, thereby registering their
                 *         signatures as valid and allowing the fulfiller to skip signature
                 *         verification on fulfillment. Note that validated orders may still
                 *         be unfulfillable due to invalid item amounts or other factors;
                 *         callers should determine whether validated orders are fulfillable
                 *         by simulating the fulfillment call prior to execution. Also note
                 *         that anyone can validate a signed order, but only the offerer can
                 *         validate an order without supplying a signature.
                 *
                 * @param orders The orders to validate.
                 *
                 * @return validated A boolean indicating whether the supplied orders have
                 *                   been successfully validated.
                 */
                function validate(
                    Order[] calldata orders
                ) external returns (bool validated);
                /**
                 * @notice Cancel all orders from a given offerer with a given zone in bulk
                 *         by incrementing a counter. Note that only the offerer may
                 *         increment the counter.
                 *
                 * @return newCounter The new counter.
                 */
                function incrementCounter() external returns (uint256 newCounter);
                /**
                 * @notice Fulfill an order offering an ERC721 token by supplying Ether (or
                 *         the native token for the given chain) as consideration for the
                 *         order. An arbitrary number of "additional recipients" may also be
                 *         supplied which will each receive native tokens from the fulfiller
                 *         as consideration. Note that this function costs less gas than
                 *         `fulfillBasicOrder` due to the zero bytes in the function
                 *         selector (0x00000000) which also results in earlier function
                 *         dispatch.
                 *
                 * @param parameters Additional information on the fulfilled order. Note
                 *                   that the offerer must first approve this contract (or
                 *                   their preferred conduit if indicated by the order) for
                 *                   their offered ERC721 token to be transferred.
                 *
                 * @return fulfilled A boolean indicating whether the order has been
                 *                   successfully fulfilled.
                 */
                function fulfillBasicOrder_efficient_6GL6yc(
                    BasicOrderParameters calldata parameters
                ) external payable returns (bool fulfilled);
                /**
                 * @notice Retrieve the order hash for a given order.
                 *
                 * @param order The components of the order.
                 *
                 * @return orderHash The order hash.
                 */
                function getOrderHash(
                    OrderComponents calldata order
                ) external view returns (bytes32 orderHash);
                /**
                 * @notice Retrieve the status of a given order by hash, including whether
                 *         the order has been cancelled or validated and the fraction of the
                 *         order that has been filled.
                 *
                 * @param orderHash The order hash in question.
                 *
                 * @return isValidated A boolean indicating whether the order in question
                 *                     has been validated (i.e. previously approved or
                 *                     partially filled).
                 * @return isCancelled A boolean indicating whether the order in question
                 *                     has been cancelled.
                 * @return totalFilled The total portion of the order that has been filled
                 *                     (i.e. the "numerator").
                 * @return totalSize   The total size of the order that is either filled or
                 *                     unfilled (i.e. the "denominator").
                 */
                function getOrderStatus(
                    bytes32 orderHash
                )
                    external
                    view
                    returns (
                        bool isValidated,
                        bool isCancelled,
                        uint256 totalFilled,
                        uint256 totalSize
                    );
                /**
                 * @notice Retrieve the current counter for a given offerer.
                 *
                 * @param offerer The offerer in question.
                 *
                 * @return counter The current counter.
                 */
                function getCounter(
                    address offerer
                ) external view returns (uint256 counter);
                /**
                 * @notice Retrieve configuration information for this contract.
                 *
                 * @return version           The contract version.
                 * @return domainSeparator   The domain separator for this contract.
                 * @return conduitController The conduit Controller set for this contract.
                 */
                function information()
                    external
                    view
                    returns (
                        string memory version,
                        bytes32 domainSeparator,
                        address conduitController
                    );
                function getContractOffererNonce(
                    address contractOfferer
                ) external view returns (uint256 nonce);
                /**
                 * @notice Retrieve the name of this contract.
                 *
                 * @return contractName The name of this contract.
                 */
                function name() external view returns (string memory contractName);
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.13;
            type CalldataPointer is uint256;
            type ReturndataPointer is uint256;
            type MemoryPointer is uint256;
            using CalldataPointerLib for CalldataPointer global;
            using MemoryPointerLib for MemoryPointer global;
            using ReturndataPointerLib for ReturndataPointer global;
            using CalldataReaders for CalldataPointer global;
            using ReturndataReaders for ReturndataPointer global;
            using MemoryReaders for MemoryPointer global;
            using MemoryWriters for MemoryPointer global;
            CalldataPointer constant CalldataStart = CalldataPointer.wrap(0x04);
            MemoryPointer constant FreeMemoryPPtr = MemoryPointer.wrap(0x40);
            uint256 constant IdentityPrecompileAddress = 0x4;
            uint256 constant OffsetOrLengthMask = 0xffffffff;
            uint256 constant _OneWord = 0x20;
            uint256 constant _FreeMemoryPointerSlot = 0x40;
            /// @dev Allocates `size` bytes in memory by increasing the free memory pointer
            ///    and returns the memory pointer to the first byte of the allocated region.
            // (Free functions cannot have visibility.)
            // solhint-disable-next-line func-visibility
            function malloc(uint256 size) pure returns (MemoryPointer mPtr) {
                assembly {
                    mPtr := mload(_FreeMemoryPointerSlot)
                    mstore(_FreeMemoryPointerSlot, add(mPtr, size))
                }
            }
            // (Free functions cannot have visibility.)
            // solhint-disable-next-line func-visibility
            function getFreeMemoryPointer() pure returns (MemoryPointer mPtr) {
                mPtr = FreeMemoryPPtr.readMemoryPointer();
            }
            // (Free functions cannot have visibility.)
            // solhint-disable-next-line func-visibility
            function setFreeMemoryPointer(MemoryPointer mPtr) pure {
                FreeMemoryPPtr.write(mPtr);
            }
            library CalldataPointerLib {
                function lt(
                    CalldataPointer a,
                    CalldataPointer b
                ) internal pure returns (bool c) {
                    assembly {
                        c := lt(a, b)
                    }
                }
                function gt(
                    CalldataPointer a,
                    CalldataPointer b
                ) internal pure returns (bool c) {
                    assembly {
                        c := gt(a, b)
                    }
                }
                function eq(
                    CalldataPointer a,
                    CalldataPointer b
                ) internal pure returns (bool c) {
                    assembly {
                        c := eq(a, b)
                    }
                }
                function isNull(CalldataPointer a) internal pure returns (bool b) {
                    assembly {
                        b := iszero(a)
                    }
                }
                /// @dev Resolves an offset stored at `cdPtr + headOffset` to a calldata.
                ///      pointer `cdPtr` must point to some parent object with a dynamic
                ///      type's head stored at `cdPtr + headOffset`.
                function pptr(
                    CalldataPointer cdPtr,
                    uint256 headOffset
                ) internal pure returns (CalldataPointer cdPtrChild) {
                    cdPtrChild = cdPtr.offset(
                        cdPtr.offset(headOffset).readUint256() & OffsetOrLengthMask
                    );
                }
                /// @dev Resolves an offset stored at `cdPtr` to a calldata pointer.
                ///      `cdPtr` must point to some parent object with a dynamic type as its
                ///      first member, e.g. `struct { bytes data; }`
                function pptr(
                    CalldataPointer cdPtr
                ) internal pure returns (CalldataPointer cdPtrChild) {
                    cdPtrChild = cdPtr.offset(cdPtr.readUint256() & OffsetOrLengthMask);
                }
                /// @dev Returns the calldata pointer one word after `cdPtr`.
                function next(
                    CalldataPointer cdPtr
                ) internal pure returns (CalldataPointer cdPtrNext) {
                    assembly {
                        cdPtrNext := add(cdPtr, _OneWord)
                    }
                }
                /// @dev Returns the calldata pointer `_offset` bytes after `cdPtr`.
                function offset(
                    CalldataPointer cdPtr,
                    uint256 _offset
                ) internal pure returns (CalldataPointer cdPtrNext) {
                    assembly {
                        cdPtrNext := add(cdPtr, _offset)
                    }
                }
                /// @dev Copies `size` bytes from calldata starting at `src` to memory at
                ///      `dst`.
                function copy(
                    CalldataPointer src,
                    MemoryPointer dst,
                    uint256 size
                ) internal pure {
                    assembly {
                        calldatacopy(dst, src, size)
                    }
                }
            }
            library ReturndataPointerLib {
                function lt(
                    ReturndataPointer a,
                    ReturndataPointer b
                ) internal pure returns (bool c) {
                    assembly {
                        c := lt(a, b)
                    }
                }
                function gt(
                    ReturndataPointer a,
                    ReturndataPointer b
                ) internal pure returns (bool c) {
                    assembly {
                        c := gt(a, b)
                    }
                }
                function eq(
                    ReturndataPointer a,
                    ReturndataPointer b
                ) internal pure returns (bool c) {
                    assembly {
                        c := eq(a, b)
                    }
                }
                function isNull(ReturndataPointer a) internal pure returns (bool b) {
                    assembly {
                        b := iszero(a)
                    }
                }
                /// @dev Resolves an offset stored at `rdPtr + headOffset` to a returndata
                ///      pointer. `rdPtr` must point to some parent object with a dynamic
                ///      type's head stored at `rdPtr + headOffset`.
                function pptr(
                    ReturndataPointer rdPtr,
                    uint256 headOffset
                ) internal pure returns (ReturndataPointer rdPtrChild) {
                    rdPtrChild = rdPtr.offset(
                        rdPtr.offset(headOffset).readUint256() & OffsetOrLengthMask
                    );
                }
                /// @dev Resolves an offset stored at `rdPtr` to a returndata pointer.
                ///    `rdPtr` must point to some parent object with a dynamic type as its
                ///    first member, e.g. `struct { bytes data; }`
                function pptr(
                    ReturndataPointer rdPtr
                ) internal pure returns (ReturndataPointer rdPtrChild) {
                    rdPtrChild = rdPtr.offset(rdPtr.readUint256() & OffsetOrLengthMask);
                }
                /// @dev Returns the returndata pointer one word after `cdPtr`.
                function next(
                    ReturndataPointer rdPtr
                ) internal pure returns (ReturndataPointer rdPtrNext) {
                    assembly {
                        rdPtrNext := add(rdPtr, _OneWord)
                    }
                }
                /// @dev Returns the returndata pointer `_offset` bytes after `cdPtr`.
                function offset(
                    ReturndataPointer rdPtr,
                    uint256 _offset
                ) internal pure returns (ReturndataPointer rdPtrNext) {
                    assembly {
                        rdPtrNext := add(rdPtr, _offset)
                    }
                }
                /// @dev Copies `size` bytes from returndata starting at `src` to memory at
                /// `dst`.
                function copy(
                    ReturndataPointer src,
                    MemoryPointer dst,
                    uint256 size
                ) internal pure {
                    assembly {
                        returndatacopy(dst, src, size)
                    }
                }
            }
            library MemoryPointerLib {
                function copy(
                    MemoryPointer src,
                    MemoryPointer dst,
                    uint256 size
                ) internal view {
                    assembly {
                        let success := staticcall(
                            gas(),
                            IdentityPrecompileAddress,
                            src,
                            size,
                            dst,
                            size
                        )
                        if or(iszero(returndatasize()), iszero(success)) {
                            revert(0, 0)
                        }
                    }
                }
                function lt(
                    MemoryPointer a,
                    MemoryPointer b
                ) internal pure returns (bool c) {
                    assembly {
                        c := lt(a, b)
                    }
                }
                function gt(
                    MemoryPointer a,
                    MemoryPointer b
                ) internal pure returns (bool c) {
                    assembly {
                        c := gt(a, b)
                    }
                }
                function eq(
                    MemoryPointer a,
                    MemoryPointer b
                ) internal pure returns (bool c) {
                    assembly {
                        c := eq(a, b)
                    }
                }
                function isNull(MemoryPointer a) internal pure returns (bool b) {
                    assembly {
                        b := iszero(a)
                    }
                }
                function hash(
                    MemoryPointer ptr,
                    uint256 length
                ) internal pure returns (bytes32 _hash) {
                    assembly {
                        _hash := keccak256(ptr, length)
                    }
                }
                /// @dev Returns the memory pointer one word after `mPtr`.
                function next(
                    MemoryPointer mPtr
                ) internal pure returns (MemoryPointer mPtrNext) {
                    assembly {
                        mPtrNext := add(mPtr, _OneWord)
                    }
                }
                /// @dev Returns the memory pointer `_offset` bytes after `mPtr`.
                function offset(
                    MemoryPointer mPtr,
                    uint256 _offset
                ) internal pure returns (MemoryPointer mPtrNext) {
                    assembly {
                        mPtrNext := add(mPtr, _offset)
                    }
                }
                /// @dev Resolves a pointer at `mPtr + headOffset` to a memory
                ///    pointer. `mPtr` must point to some parent object with a dynamic
                ///    type's pointer stored at `mPtr + headOffset`.
                function pptr(
                    MemoryPointer mPtr,
                    uint256 headOffset
                ) internal pure returns (MemoryPointer mPtrChild) {
                    mPtrChild = mPtr.offset(headOffset).readMemoryPointer();
                }
                /// @dev Resolves a pointer stored at `mPtr` to a memory pointer.
                ///    `mPtr` must point to some parent object with a dynamic type as its
                ///    first member, e.g. `struct { bytes data; }`
                function pptr(
                    MemoryPointer mPtr
                ) internal pure returns (MemoryPointer mPtrChild) {
                    mPtrChild = mPtr.readMemoryPointer();
                }
            }
            library CalldataReaders {
                /// @dev Reads the value at `cdPtr` and applies a mask to return only the
                ///    last 4 bytes.
                function readMaskedUint256(
                    CalldataPointer cdPtr
                ) internal pure returns (uint256 value) {
                    value = cdPtr.readUint256() & OffsetOrLengthMask;
                }
                /// @dev Reads the bool at `cdPtr` in calldata.
                function readBool(
                    CalldataPointer cdPtr
                ) internal pure returns (bool value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the address at `cdPtr` in calldata.
                function readAddress(
                    CalldataPointer cdPtr
                ) internal pure returns (address value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the bytes1 at `cdPtr` in calldata.
                function readBytes1(
                    CalldataPointer cdPtr
                ) internal pure returns (bytes1 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the bytes2 at `cdPtr` in calldata.
                function readBytes2(
                    CalldataPointer cdPtr
                ) internal pure returns (bytes2 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the bytes3 at `cdPtr` in calldata.
                function readBytes3(
                    CalldataPointer cdPtr
                ) internal pure returns (bytes3 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the bytes4 at `cdPtr` in calldata.
                function readBytes4(
                    CalldataPointer cdPtr
                ) internal pure returns (bytes4 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the bytes5 at `cdPtr` in calldata.
                function readBytes5(
                    CalldataPointer cdPtr
                ) internal pure returns (bytes5 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the bytes6 at `cdPtr` in calldata.
                function readBytes6(
                    CalldataPointer cdPtr
                ) internal pure returns (bytes6 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the bytes7 at `cdPtr` in calldata.
                function readBytes7(
                    CalldataPointer cdPtr
                ) internal pure returns (bytes7 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the bytes8 at `cdPtr` in calldata.
                function readBytes8(
                    CalldataPointer cdPtr
                ) internal pure returns (bytes8 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the bytes9 at `cdPtr` in calldata.
                function readBytes9(
                    CalldataPointer cdPtr
                ) internal pure returns (bytes9 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the bytes10 at `cdPtr` in calldata.
                function readBytes10(
                    CalldataPointer cdPtr
                ) internal pure returns (bytes10 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the bytes11 at `cdPtr` in calldata.
                function readBytes11(
                    CalldataPointer cdPtr
                ) internal pure returns (bytes11 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the bytes12 at `cdPtr` in calldata.
                function readBytes12(
                    CalldataPointer cdPtr
                ) internal pure returns (bytes12 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the bytes13 at `cdPtr` in calldata.
                function readBytes13(
                    CalldataPointer cdPtr
                ) internal pure returns (bytes13 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the bytes14 at `cdPtr` in calldata.
                function readBytes14(
                    CalldataPointer cdPtr
                ) internal pure returns (bytes14 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the bytes15 at `cdPtr` in calldata.
                function readBytes15(
                    CalldataPointer cdPtr
                ) internal pure returns (bytes15 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the bytes16 at `cdPtr` in calldata.
                function readBytes16(
                    CalldataPointer cdPtr
                ) internal pure returns (bytes16 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the bytes17 at `cdPtr` in calldata.
                function readBytes17(
                    CalldataPointer cdPtr
                ) internal pure returns (bytes17 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the bytes18 at `cdPtr` in calldata.
                function readBytes18(
                    CalldataPointer cdPtr
                ) internal pure returns (bytes18 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the bytes19 at `cdPtr` in calldata.
                function readBytes19(
                    CalldataPointer cdPtr
                ) internal pure returns (bytes19 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the bytes20 at `cdPtr` in calldata.
                function readBytes20(
                    CalldataPointer cdPtr
                ) internal pure returns (bytes20 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the bytes21 at `cdPtr` in calldata.
                function readBytes21(
                    CalldataPointer cdPtr
                ) internal pure returns (bytes21 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the bytes22 at `cdPtr` in calldata.
                function readBytes22(
                    CalldataPointer cdPtr
                ) internal pure returns (bytes22 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the bytes23 at `cdPtr` in calldata.
                function readBytes23(
                    CalldataPointer cdPtr
                ) internal pure returns (bytes23 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the bytes24 at `cdPtr` in calldata.
                function readBytes24(
                    CalldataPointer cdPtr
                ) internal pure returns (bytes24 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the bytes25 at `cdPtr` in calldata.
                function readBytes25(
                    CalldataPointer cdPtr
                ) internal pure returns (bytes25 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the bytes26 at `cdPtr` in calldata.
                function readBytes26(
                    CalldataPointer cdPtr
                ) internal pure returns (bytes26 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the bytes27 at `cdPtr` in calldata.
                function readBytes27(
                    CalldataPointer cdPtr
                ) internal pure returns (bytes27 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the bytes28 at `cdPtr` in calldata.
                function readBytes28(
                    CalldataPointer cdPtr
                ) internal pure returns (bytes28 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the bytes29 at `cdPtr` in calldata.
                function readBytes29(
                    CalldataPointer cdPtr
                ) internal pure returns (bytes29 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the bytes30 at `cdPtr` in calldata.
                function readBytes30(
                    CalldataPointer cdPtr
                ) internal pure returns (bytes30 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the bytes31 at `cdPtr` in calldata.
                function readBytes31(
                    CalldataPointer cdPtr
                ) internal pure returns (bytes31 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the bytes32 at `cdPtr` in calldata.
                function readBytes32(
                    CalldataPointer cdPtr
                ) internal pure returns (bytes32 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the uint8 at `cdPtr` in calldata.
                function readUint8(
                    CalldataPointer cdPtr
                ) internal pure returns (uint8 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the uint16 at `cdPtr` in calldata.
                function readUint16(
                    CalldataPointer cdPtr
                ) internal pure returns (uint16 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the uint24 at `cdPtr` in calldata.
                function readUint24(
                    CalldataPointer cdPtr
                ) internal pure returns (uint24 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the uint32 at `cdPtr` in calldata.
                function readUint32(
                    CalldataPointer cdPtr
                ) internal pure returns (uint32 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the uint40 at `cdPtr` in calldata.
                function readUint40(
                    CalldataPointer cdPtr
                ) internal pure returns (uint40 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the uint48 at `cdPtr` in calldata.
                function readUint48(
                    CalldataPointer cdPtr
                ) internal pure returns (uint48 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the uint56 at `cdPtr` in calldata.
                function readUint56(
                    CalldataPointer cdPtr
                ) internal pure returns (uint56 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the uint64 at `cdPtr` in calldata.
                function readUint64(
                    CalldataPointer cdPtr
                ) internal pure returns (uint64 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the uint72 at `cdPtr` in calldata.
                function readUint72(
                    CalldataPointer cdPtr
                ) internal pure returns (uint72 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the uint80 at `cdPtr` in calldata.
                function readUint80(
                    CalldataPointer cdPtr
                ) internal pure returns (uint80 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the uint88 at `cdPtr` in calldata.
                function readUint88(
                    CalldataPointer cdPtr
                ) internal pure returns (uint88 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the uint96 at `cdPtr` in calldata.
                function readUint96(
                    CalldataPointer cdPtr
                ) internal pure returns (uint96 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the uint104 at `cdPtr` in calldata.
                function readUint104(
                    CalldataPointer cdPtr
                ) internal pure returns (uint104 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the uint112 at `cdPtr` in calldata.
                function readUint112(
                    CalldataPointer cdPtr
                ) internal pure returns (uint112 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the uint120 at `cdPtr` in calldata.
                function readUint120(
                    CalldataPointer cdPtr
                ) internal pure returns (uint120 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the uint128 at `cdPtr` in calldata.
                function readUint128(
                    CalldataPointer cdPtr
                ) internal pure returns (uint128 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the uint136 at `cdPtr` in calldata.
                function readUint136(
                    CalldataPointer cdPtr
                ) internal pure returns (uint136 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the uint144 at `cdPtr` in calldata.
                function readUint144(
                    CalldataPointer cdPtr
                ) internal pure returns (uint144 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the uint152 at `cdPtr` in calldata.
                function readUint152(
                    CalldataPointer cdPtr
                ) internal pure returns (uint152 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the uint160 at `cdPtr` in calldata.
                function readUint160(
                    CalldataPointer cdPtr
                ) internal pure returns (uint160 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the uint168 at `cdPtr` in calldata.
                function readUint168(
                    CalldataPointer cdPtr
                ) internal pure returns (uint168 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the uint176 at `cdPtr` in calldata.
                function readUint176(
                    CalldataPointer cdPtr
                ) internal pure returns (uint176 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the uint184 at `cdPtr` in calldata.
                function readUint184(
                    CalldataPointer cdPtr
                ) internal pure returns (uint184 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the uint192 at `cdPtr` in calldata.
                function readUint192(
                    CalldataPointer cdPtr
                ) internal pure returns (uint192 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the uint200 at `cdPtr` in calldata.
                function readUint200(
                    CalldataPointer cdPtr
                ) internal pure returns (uint200 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the uint208 at `cdPtr` in calldata.
                function readUint208(
                    CalldataPointer cdPtr
                ) internal pure returns (uint208 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the uint216 at `cdPtr` in calldata.
                function readUint216(
                    CalldataPointer cdPtr
                ) internal pure returns (uint216 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the uint224 at `cdPtr` in calldata.
                function readUint224(
                    CalldataPointer cdPtr
                ) internal pure returns (uint224 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the uint232 at `cdPtr` in calldata.
                function readUint232(
                    CalldataPointer cdPtr
                ) internal pure returns (uint232 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the uint240 at `cdPtr` in calldata.
                function readUint240(
                    CalldataPointer cdPtr
                ) internal pure returns (uint240 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the uint248 at `cdPtr` in calldata.
                function readUint248(
                    CalldataPointer cdPtr
                ) internal pure returns (uint248 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the uint256 at `cdPtr` in calldata.
                function readUint256(
                    CalldataPointer cdPtr
                ) internal pure returns (uint256 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the int8 at `cdPtr` in calldata.
                function readInt8(
                    CalldataPointer cdPtr
                ) internal pure returns (int8 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the int16 at `cdPtr` in calldata.
                function readInt16(
                    CalldataPointer cdPtr
                ) internal pure returns (int16 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the int24 at `cdPtr` in calldata.
                function readInt24(
                    CalldataPointer cdPtr
                ) internal pure returns (int24 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the int32 at `cdPtr` in calldata.
                function readInt32(
                    CalldataPointer cdPtr
                ) internal pure returns (int32 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the int40 at `cdPtr` in calldata.
                function readInt40(
                    CalldataPointer cdPtr
                ) internal pure returns (int40 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the int48 at `cdPtr` in calldata.
                function readInt48(
                    CalldataPointer cdPtr
                ) internal pure returns (int48 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the int56 at `cdPtr` in calldata.
                function readInt56(
                    CalldataPointer cdPtr
                ) internal pure returns (int56 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the int64 at `cdPtr` in calldata.
                function readInt64(
                    CalldataPointer cdPtr
                ) internal pure returns (int64 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the int72 at `cdPtr` in calldata.
                function readInt72(
                    CalldataPointer cdPtr
                ) internal pure returns (int72 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the int80 at `cdPtr` in calldata.
                function readInt80(
                    CalldataPointer cdPtr
                ) internal pure returns (int80 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the int88 at `cdPtr` in calldata.
                function readInt88(
                    CalldataPointer cdPtr
                ) internal pure returns (int88 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the int96 at `cdPtr` in calldata.
                function readInt96(
                    CalldataPointer cdPtr
                ) internal pure returns (int96 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the int104 at `cdPtr` in calldata.
                function readInt104(
                    CalldataPointer cdPtr
                ) internal pure returns (int104 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the int112 at `cdPtr` in calldata.
                function readInt112(
                    CalldataPointer cdPtr
                ) internal pure returns (int112 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the int120 at `cdPtr` in calldata.
                function readInt120(
                    CalldataPointer cdPtr
                ) internal pure returns (int120 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the int128 at `cdPtr` in calldata.
                function readInt128(
                    CalldataPointer cdPtr
                ) internal pure returns (int128 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the int136 at `cdPtr` in calldata.
                function readInt136(
                    CalldataPointer cdPtr
                ) internal pure returns (int136 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the int144 at `cdPtr` in calldata.
                function readInt144(
                    CalldataPointer cdPtr
                ) internal pure returns (int144 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the int152 at `cdPtr` in calldata.
                function readInt152(
                    CalldataPointer cdPtr
                ) internal pure returns (int152 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the int160 at `cdPtr` in calldata.
                function readInt160(
                    CalldataPointer cdPtr
                ) internal pure returns (int160 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the int168 at `cdPtr` in calldata.
                function readInt168(
                    CalldataPointer cdPtr
                ) internal pure returns (int168 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the int176 at `cdPtr` in calldata.
                function readInt176(
                    CalldataPointer cdPtr
                ) internal pure returns (int176 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the int184 at `cdPtr` in calldata.
                function readInt184(
                    CalldataPointer cdPtr
                ) internal pure returns (int184 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the int192 at `cdPtr` in calldata.
                function readInt192(
                    CalldataPointer cdPtr
                ) internal pure returns (int192 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the int200 at `cdPtr` in calldata.
                function readInt200(
                    CalldataPointer cdPtr
                ) internal pure returns (int200 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the int208 at `cdPtr` in calldata.
                function readInt208(
                    CalldataPointer cdPtr
                ) internal pure returns (int208 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the int216 at `cdPtr` in calldata.
                function readInt216(
                    CalldataPointer cdPtr
                ) internal pure returns (int216 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the int224 at `cdPtr` in calldata.
                function readInt224(
                    CalldataPointer cdPtr
                ) internal pure returns (int224 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the int232 at `cdPtr` in calldata.
                function readInt232(
                    CalldataPointer cdPtr
                ) internal pure returns (int232 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the int240 at `cdPtr` in calldata.
                function readInt240(
                    CalldataPointer cdPtr
                ) internal pure returns (int240 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the int248 at `cdPtr` in calldata.
                function readInt248(
                    CalldataPointer cdPtr
                ) internal pure returns (int248 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
                /// @dev Reads the int256 at `cdPtr` in calldata.
                function readInt256(
                    CalldataPointer cdPtr
                ) internal pure returns (int256 value) {
                    assembly {
                        value := calldataload(cdPtr)
                    }
                }
            }
            library ReturndataReaders {
                /// @dev Reads value at `rdPtr` & applies a mask to return only last 4 bytes
                function readMaskedUint256(
                    ReturndataPointer rdPtr
                ) internal pure returns (uint256 value) {
                    value = rdPtr.readUint256() & OffsetOrLengthMask;
                }
                /// @dev Reads the bool at `rdPtr` in returndata.
                function readBool(
                    ReturndataPointer rdPtr
                ) internal pure returns (bool value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the address at `rdPtr` in returndata.
                function readAddress(
                    ReturndataPointer rdPtr
                ) internal pure returns (address value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the bytes1 at `rdPtr` in returndata.
                function readBytes1(
                    ReturndataPointer rdPtr
                ) internal pure returns (bytes1 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the bytes2 at `rdPtr` in returndata.
                function readBytes2(
                    ReturndataPointer rdPtr
                ) internal pure returns (bytes2 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the bytes3 at `rdPtr` in returndata.
                function readBytes3(
                    ReturndataPointer rdPtr
                ) internal pure returns (bytes3 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the bytes4 at `rdPtr` in returndata.
                function readBytes4(
                    ReturndataPointer rdPtr
                ) internal pure returns (bytes4 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the bytes5 at `rdPtr` in returndata.
                function readBytes5(
                    ReturndataPointer rdPtr
                ) internal pure returns (bytes5 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the bytes6 at `rdPtr` in returndata.
                function readBytes6(
                    ReturndataPointer rdPtr
                ) internal pure returns (bytes6 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the bytes7 at `rdPtr` in returndata.
                function readBytes7(
                    ReturndataPointer rdPtr
                ) internal pure returns (bytes7 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the bytes8 at `rdPtr` in returndata.
                function readBytes8(
                    ReturndataPointer rdPtr
                ) internal pure returns (bytes8 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the bytes9 at `rdPtr` in returndata.
                function readBytes9(
                    ReturndataPointer rdPtr
                ) internal pure returns (bytes9 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the bytes10 at `rdPtr` in returndata.
                function readBytes10(
                    ReturndataPointer rdPtr
                ) internal pure returns (bytes10 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the bytes11 at `rdPtr` in returndata.
                function readBytes11(
                    ReturndataPointer rdPtr
                ) internal pure returns (bytes11 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the bytes12 at `rdPtr` in returndata.
                function readBytes12(
                    ReturndataPointer rdPtr
                ) internal pure returns (bytes12 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the bytes13 at `rdPtr` in returndata.
                function readBytes13(
                    ReturndataPointer rdPtr
                ) internal pure returns (bytes13 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the bytes14 at `rdPtr` in returndata.
                function readBytes14(
                    ReturndataPointer rdPtr
                ) internal pure returns (bytes14 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the bytes15 at `rdPtr` in returndata.
                function readBytes15(
                    ReturndataPointer rdPtr
                ) internal pure returns (bytes15 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the bytes16 at `rdPtr` in returndata.
                function readBytes16(
                    ReturndataPointer rdPtr
                ) internal pure returns (bytes16 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the bytes17 at `rdPtr` in returndata.
                function readBytes17(
                    ReturndataPointer rdPtr
                ) internal pure returns (bytes17 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the bytes18 at `rdPtr` in returndata.
                function readBytes18(
                    ReturndataPointer rdPtr
                ) internal pure returns (bytes18 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the bytes19 at `rdPtr` in returndata.
                function readBytes19(
                    ReturndataPointer rdPtr
                ) internal pure returns (bytes19 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the bytes20 at `rdPtr` in returndata.
                function readBytes20(
                    ReturndataPointer rdPtr
                ) internal pure returns (bytes20 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the bytes21 at `rdPtr` in returndata.
                function readBytes21(
                    ReturndataPointer rdPtr
                ) internal pure returns (bytes21 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the bytes22 at `rdPtr` in returndata.
                function readBytes22(
                    ReturndataPointer rdPtr
                ) internal pure returns (bytes22 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the bytes23 at `rdPtr` in returndata.
                function readBytes23(
                    ReturndataPointer rdPtr
                ) internal pure returns (bytes23 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the bytes24 at `rdPtr` in returndata.
                function readBytes24(
                    ReturndataPointer rdPtr
                ) internal pure returns (bytes24 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the bytes25 at `rdPtr` in returndata.
                function readBytes25(
                    ReturndataPointer rdPtr
                ) internal pure returns (bytes25 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the bytes26 at `rdPtr` in returndata.
                function readBytes26(
                    ReturndataPointer rdPtr
                ) internal pure returns (bytes26 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the bytes27 at `rdPtr` in returndata.
                function readBytes27(
                    ReturndataPointer rdPtr
                ) internal pure returns (bytes27 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the bytes28 at `rdPtr` in returndata.
                function readBytes28(
                    ReturndataPointer rdPtr
                ) internal pure returns (bytes28 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the bytes29 at `rdPtr` in returndata.
                function readBytes29(
                    ReturndataPointer rdPtr
                ) internal pure returns (bytes29 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the bytes30 at `rdPtr` in returndata.
                function readBytes30(
                    ReturndataPointer rdPtr
                ) internal pure returns (bytes30 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the bytes31 at `rdPtr` in returndata.
                function readBytes31(
                    ReturndataPointer rdPtr
                ) internal pure returns (bytes31 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the bytes32 at `rdPtr` in returndata.
                function readBytes32(
                    ReturndataPointer rdPtr
                ) internal pure returns (bytes32 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the uint8 at `rdPtr` in returndata.
                function readUint8(
                    ReturndataPointer rdPtr
                ) internal pure returns (uint8 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the uint16 at `rdPtr` in returndata.
                function readUint16(
                    ReturndataPointer rdPtr
                ) internal pure returns (uint16 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the uint24 at `rdPtr` in returndata.
                function readUint24(
                    ReturndataPointer rdPtr
                ) internal pure returns (uint24 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the uint32 at `rdPtr` in returndata.
                function readUint32(
                    ReturndataPointer rdPtr
                ) internal pure returns (uint32 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the uint40 at `rdPtr` in returndata.
                function readUint40(
                    ReturndataPointer rdPtr
                ) internal pure returns (uint40 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the uint48 at `rdPtr` in returndata.
                function readUint48(
                    ReturndataPointer rdPtr
                ) internal pure returns (uint48 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the uint56 at `rdPtr` in returndata.
                function readUint56(
                    ReturndataPointer rdPtr
                ) internal pure returns (uint56 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the uint64 at `rdPtr` in returndata.
                function readUint64(
                    ReturndataPointer rdPtr
                ) internal pure returns (uint64 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the uint72 at `rdPtr` in returndata.
                function readUint72(
                    ReturndataPointer rdPtr
                ) internal pure returns (uint72 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the uint80 at `rdPtr` in returndata.
                function readUint80(
                    ReturndataPointer rdPtr
                ) internal pure returns (uint80 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the uint88 at `rdPtr` in returndata.
                function readUint88(
                    ReturndataPointer rdPtr
                ) internal pure returns (uint88 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the uint96 at `rdPtr` in returndata.
                function readUint96(
                    ReturndataPointer rdPtr
                ) internal pure returns (uint96 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the uint104 at `rdPtr` in returndata.
                function readUint104(
                    ReturndataPointer rdPtr
                ) internal pure returns (uint104 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the uint112 at `rdPtr` in returndata.
                function readUint112(
                    ReturndataPointer rdPtr
                ) internal pure returns (uint112 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the uint120 at `rdPtr` in returndata.
                function readUint120(
                    ReturndataPointer rdPtr
                ) internal pure returns (uint120 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the uint128 at `rdPtr` in returndata.
                function readUint128(
                    ReturndataPointer rdPtr
                ) internal pure returns (uint128 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the uint136 at `rdPtr` in returndata.
                function readUint136(
                    ReturndataPointer rdPtr
                ) internal pure returns (uint136 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the uint144 at `rdPtr` in returndata.
                function readUint144(
                    ReturndataPointer rdPtr
                ) internal pure returns (uint144 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the uint152 at `rdPtr` in returndata.
                function readUint152(
                    ReturndataPointer rdPtr
                ) internal pure returns (uint152 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the uint160 at `rdPtr` in returndata.
                function readUint160(
                    ReturndataPointer rdPtr
                ) internal pure returns (uint160 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the uint168 at `rdPtr` in returndata.
                function readUint168(
                    ReturndataPointer rdPtr
                ) internal pure returns (uint168 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the uint176 at `rdPtr` in returndata.
                function readUint176(
                    ReturndataPointer rdPtr
                ) internal pure returns (uint176 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the uint184 at `rdPtr` in returndata.
                function readUint184(
                    ReturndataPointer rdPtr
                ) internal pure returns (uint184 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the uint192 at `rdPtr` in returndata.
                function readUint192(
                    ReturndataPointer rdPtr
                ) internal pure returns (uint192 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the uint200 at `rdPtr` in returndata.
                function readUint200(
                    ReturndataPointer rdPtr
                ) internal pure returns (uint200 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the uint208 at `rdPtr` in returndata.
                function readUint208(
                    ReturndataPointer rdPtr
                ) internal pure returns (uint208 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the uint216 at `rdPtr` in returndata.
                function readUint216(
                    ReturndataPointer rdPtr
                ) internal pure returns (uint216 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the uint224 at `rdPtr` in returndata.
                function readUint224(
                    ReturndataPointer rdPtr
                ) internal pure returns (uint224 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the uint232 at `rdPtr` in returndata.
                function readUint232(
                    ReturndataPointer rdPtr
                ) internal pure returns (uint232 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the uint240 at `rdPtr` in returndata.
                function readUint240(
                    ReturndataPointer rdPtr
                ) internal pure returns (uint240 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the uint248 at `rdPtr` in returndata.
                function readUint248(
                    ReturndataPointer rdPtr
                ) internal pure returns (uint248 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the uint256 at `rdPtr` in returndata.
                function readUint256(
                    ReturndataPointer rdPtr
                ) internal pure returns (uint256 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the int8 at `rdPtr` in returndata.
                function readInt8(
                    ReturndataPointer rdPtr
                ) internal pure returns (int8 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the int16 at `rdPtr` in returndata.
                function readInt16(
                    ReturndataPointer rdPtr
                ) internal pure returns (int16 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the int24 at `rdPtr` in returndata.
                function readInt24(
                    ReturndataPointer rdPtr
                ) internal pure returns (int24 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the int32 at `rdPtr` in returndata.
                function readInt32(
                    ReturndataPointer rdPtr
                ) internal pure returns (int32 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the int40 at `rdPtr` in returndata.
                function readInt40(
                    ReturndataPointer rdPtr
                ) internal pure returns (int40 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the int48 at `rdPtr` in returndata.
                function readInt48(
                    ReturndataPointer rdPtr
                ) internal pure returns (int48 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the int56 at `rdPtr` in returndata.
                function readInt56(
                    ReturndataPointer rdPtr
                ) internal pure returns (int56 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the int64 at `rdPtr` in returndata.
                function readInt64(
                    ReturndataPointer rdPtr
                ) internal pure returns (int64 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the int72 at `rdPtr` in returndata.
                function readInt72(
                    ReturndataPointer rdPtr
                ) internal pure returns (int72 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the int80 at `rdPtr` in returndata.
                function readInt80(
                    ReturndataPointer rdPtr
                ) internal pure returns (int80 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the int88 at `rdPtr` in returndata.
                function readInt88(
                    ReturndataPointer rdPtr
                ) internal pure returns (int88 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the int96 at `rdPtr` in returndata.
                function readInt96(
                    ReturndataPointer rdPtr
                ) internal pure returns (int96 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the int104 at `rdPtr` in returndata.
                function readInt104(
                    ReturndataPointer rdPtr
                ) internal pure returns (int104 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the int112 at `rdPtr` in returndata.
                function readInt112(
                    ReturndataPointer rdPtr
                ) internal pure returns (int112 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the int120 at `rdPtr` in returndata.
                function readInt120(
                    ReturndataPointer rdPtr
                ) internal pure returns (int120 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the int128 at `rdPtr` in returndata.
                function readInt128(
                    ReturndataPointer rdPtr
                ) internal pure returns (int128 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the int136 at `rdPtr` in returndata.
                function readInt136(
                    ReturndataPointer rdPtr
                ) internal pure returns (int136 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the int144 at `rdPtr` in returndata.
                function readInt144(
                    ReturndataPointer rdPtr
                ) internal pure returns (int144 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the int152 at `rdPtr` in returndata.
                function readInt152(
                    ReturndataPointer rdPtr
                ) internal pure returns (int152 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the int160 at `rdPtr` in returndata.
                function readInt160(
                    ReturndataPointer rdPtr
                ) internal pure returns (int160 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the int168 at `rdPtr` in returndata.
                function readInt168(
                    ReturndataPointer rdPtr
                ) internal pure returns (int168 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the int176 at `rdPtr` in returndata.
                function readInt176(
                    ReturndataPointer rdPtr
                ) internal pure returns (int176 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the int184 at `rdPtr` in returndata.
                function readInt184(
                    ReturndataPointer rdPtr
                ) internal pure returns (int184 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the int192 at `rdPtr` in returndata.
                function readInt192(
                    ReturndataPointer rdPtr
                ) internal pure returns (int192 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the int200 at `rdPtr` in returndata.
                function readInt200(
                    ReturndataPointer rdPtr
                ) internal pure returns (int200 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the int208 at `rdPtr` in returndata.
                function readInt208(
                    ReturndataPointer rdPtr
                ) internal pure returns (int208 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the int216 at `rdPtr` in returndata.
                function readInt216(
                    ReturndataPointer rdPtr
                ) internal pure returns (int216 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the int224 at `rdPtr` in returndata.
                function readInt224(
                    ReturndataPointer rdPtr
                ) internal pure returns (int224 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the int232 at `rdPtr` in returndata.
                function readInt232(
                    ReturndataPointer rdPtr
                ) internal pure returns (int232 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the int240 at `rdPtr` in returndata.
                function readInt240(
                    ReturndataPointer rdPtr
                ) internal pure returns (int240 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the int248 at `rdPtr` in returndata.
                function readInt248(
                    ReturndataPointer rdPtr
                ) internal pure returns (int248 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
                /// @dev Reads the int256 at `rdPtr` in returndata.
                function readInt256(
                    ReturndataPointer rdPtr
                ) internal pure returns (int256 value) {
                    assembly {
                        returndatacopy(0, rdPtr, _OneWord)
                        value := mload(0)
                    }
                }
            }
            library MemoryReaders {
                /// @dev Reads the memory pointer at `mPtr` in memory.
                function readMemoryPointer(
                    MemoryPointer mPtr
                ) internal pure returns (MemoryPointer value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads value at `mPtr` & applies a mask to return only last 4 bytes
                function readMaskedUint256(
                    MemoryPointer mPtr
                ) internal pure returns (uint256 value) {
                    value = mPtr.readUint256() & OffsetOrLengthMask;
                }
                /// @dev Reads the bool at `mPtr` in memory.
                function readBool(MemoryPointer mPtr) internal pure returns (bool value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the address at `mPtr` in memory.
                function readAddress(
                    MemoryPointer mPtr
                ) internal pure returns (address value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the bytes1 at `mPtr` in memory.
                function readBytes1(
                    MemoryPointer mPtr
                ) internal pure returns (bytes1 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the bytes2 at `mPtr` in memory.
                function readBytes2(
                    MemoryPointer mPtr
                ) internal pure returns (bytes2 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the bytes3 at `mPtr` in memory.
                function readBytes3(
                    MemoryPointer mPtr
                ) internal pure returns (bytes3 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the bytes4 at `mPtr` in memory.
                function readBytes4(
                    MemoryPointer mPtr
                ) internal pure returns (bytes4 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the bytes5 at `mPtr` in memory.
                function readBytes5(
                    MemoryPointer mPtr
                ) internal pure returns (bytes5 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the bytes6 at `mPtr` in memory.
                function readBytes6(
                    MemoryPointer mPtr
                ) internal pure returns (bytes6 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the bytes7 at `mPtr` in memory.
                function readBytes7(
                    MemoryPointer mPtr
                ) internal pure returns (bytes7 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the bytes8 at `mPtr` in memory.
                function readBytes8(
                    MemoryPointer mPtr
                ) internal pure returns (bytes8 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the bytes9 at `mPtr` in memory.
                function readBytes9(
                    MemoryPointer mPtr
                ) internal pure returns (bytes9 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the bytes10 at `mPtr` in memory.
                function readBytes10(
                    MemoryPointer mPtr
                ) internal pure returns (bytes10 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the bytes11 at `mPtr` in memory.
                function readBytes11(
                    MemoryPointer mPtr
                ) internal pure returns (bytes11 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the bytes12 at `mPtr` in memory.
                function readBytes12(
                    MemoryPointer mPtr
                ) internal pure returns (bytes12 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the bytes13 at `mPtr` in memory.
                function readBytes13(
                    MemoryPointer mPtr
                ) internal pure returns (bytes13 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the bytes14 at `mPtr` in memory.
                function readBytes14(
                    MemoryPointer mPtr
                ) internal pure returns (bytes14 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the bytes15 at `mPtr` in memory.
                function readBytes15(
                    MemoryPointer mPtr
                ) internal pure returns (bytes15 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the bytes16 at `mPtr` in memory.
                function readBytes16(
                    MemoryPointer mPtr
                ) internal pure returns (bytes16 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the bytes17 at `mPtr` in memory.
                function readBytes17(
                    MemoryPointer mPtr
                ) internal pure returns (bytes17 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the bytes18 at `mPtr` in memory.
                function readBytes18(
                    MemoryPointer mPtr
                ) internal pure returns (bytes18 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the bytes19 at `mPtr` in memory.
                function readBytes19(
                    MemoryPointer mPtr
                ) internal pure returns (bytes19 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the bytes20 at `mPtr` in memory.
                function readBytes20(
                    MemoryPointer mPtr
                ) internal pure returns (bytes20 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the bytes21 at `mPtr` in memory.
                function readBytes21(
                    MemoryPointer mPtr
                ) internal pure returns (bytes21 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the bytes22 at `mPtr` in memory.
                function readBytes22(
                    MemoryPointer mPtr
                ) internal pure returns (bytes22 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the bytes23 at `mPtr` in memory.
                function readBytes23(
                    MemoryPointer mPtr
                ) internal pure returns (bytes23 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the bytes24 at `mPtr` in memory.
                function readBytes24(
                    MemoryPointer mPtr
                ) internal pure returns (bytes24 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the bytes25 at `mPtr` in memory.
                function readBytes25(
                    MemoryPointer mPtr
                ) internal pure returns (bytes25 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the bytes26 at `mPtr` in memory.
                function readBytes26(
                    MemoryPointer mPtr
                ) internal pure returns (bytes26 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the bytes27 at `mPtr` in memory.
                function readBytes27(
                    MemoryPointer mPtr
                ) internal pure returns (bytes27 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the bytes28 at `mPtr` in memory.
                function readBytes28(
                    MemoryPointer mPtr
                ) internal pure returns (bytes28 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the bytes29 at `mPtr` in memory.
                function readBytes29(
                    MemoryPointer mPtr
                ) internal pure returns (bytes29 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the bytes30 at `mPtr` in memory.
                function readBytes30(
                    MemoryPointer mPtr
                ) internal pure returns (bytes30 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the bytes31 at `mPtr` in memory.
                function readBytes31(
                    MemoryPointer mPtr
                ) internal pure returns (bytes31 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the bytes32 at `mPtr` in memory.
                function readBytes32(
                    MemoryPointer mPtr
                ) internal pure returns (bytes32 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the uint8 at `mPtr` in memory.
                function readUint8(MemoryPointer mPtr) internal pure returns (uint8 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the uint16 at `mPtr` in memory.
                function readUint16(
                    MemoryPointer mPtr
                ) internal pure returns (uint16 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the uint24 at `mPtr` in memory.
                function readUint24(
                    MemoryPointer mPtr
                ) internal pure returns (uint24 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the uint32 at `mPtr` in memory.
                function readUint32(
                    MemoryPointer mPtr
                ) internal pure returns (uint32 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the uint40 at `mPtr` in memory.
                function readUint40(
                    MemoryPointer mPtr
                ) internal pure returns (uint40 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the uint48 at `mPtr` in memory.
                function readUint48(
                    MemoryPointer mPtr
                ) internal pure returns (uint48 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the uint56 at `mPtr` in memory.
                function readUint56(
                    MemoryPointer mPtr
                ) internal pure returns (uint56 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the uint64 at `mPtr` in memory.
                function readUint64(
                    MemoryPointer mPtr
                ) internal pure returns (uint64 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the uint72 at `mPtr` in memory.
                function readUint72(
                    MemoryPointer mPtr
                ) internal pure returns (uint72 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the uint80 at `mPtr` in memory.
                function readUint80(
                    MemoryPointer mPtr
                ) internal pure returns (uint80 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the uint88 at `mPtr` in memory.
                function readUint88(
                    MemoryPointer mPtr
                ) internal pure returns (uint88 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the uint96 at `mPtr` in memory.
                function readUint96(
                    MemoryPointer mPtr
                ) internal pure returns (uint96 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the uint104 at `mPtr` in memory.
                function readUint104(
                    MemoryPointer mPtr
                ) internal pure returns (uint104 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the uint112 at `mPtr` in memory.
                function readUint112(
                    MemoryPointer mPtr
                ) internal pure returns (uint112 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the uint120 at `mPtr` in memory.
                function readUint120(
                    MemoryPointer mPtr
                ) internal pure returns (uint120 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the uint128 at `mPtr` in memory.
                function readUint128(
                    MemoryPointer mPtr
                ) internal pure returns (uint128 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the uint136 at `mPtr` in memory.
                function readUint136(
                    MemoryPointer mPtr
                ) internal pure returns (uint136 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the uint144 at `mPtr` in memory.
                function readUint144(
                    MemoryPointer mPtr
                ) internal pure returns (uint144 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the uint152 at `mPtr` in memory.
                function readUint152(
                    MemoryPointer mPtr
                ) internal pure returns (uint152 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the uint160 at `mPtr` in memory.
                function readUint160(
                    MemoryPointer mPtr
                ) internal pure returns (uint160 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the uint168 at `mPtr` in memory.
                function readUint168(
                    MemoryPointer mPtr
                ) internal pure returns (uint168 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the uint176 at `mPtr` in memory.
                function readUint176(
                    MemoryPointer mPtr
                ) internal pure returns (uint176 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the uint184 at `mPtr` in memory.
                function readUint184(
                    MemoryPointer mPtr
                ) internal pure returns (uint184 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the uint192 at `mPtr` in memory.
                function readUint192(
                    MemoryPointer mPtr
                ) internal pure returns (uint192 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the uint200 at `mPtr` in memory.
                function readUint200(
                    MemoryPointer mPtr
                ) internal pure returns (uint200 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the uint208 at `mPtr` in memory.
                function readUint208(
                    MemoryPointer mPtr
                ) internal pure returns (uint208 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the uint216 at `mPtr` in memory.
                function readUint216(
                    MemoryPointer mPtr
                ) internal pure returns (uint216 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the uint224 at `mPtr` in memory.
                function readUint224(
                    MemoryPointer mPtr
                ) internal pure returns (uint224 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the uint232 at `mPtr` in memory.
                function readUint232(
                    MemoryPointer mPtr
                ) internal pure returns (uint232 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the uint240 at `mPtr` in memory.
                function readUint240(
                    MemoryPointer mPtr
                ) internal pure returns (uint240 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the uint248 at `mPtr` in memory.
                function readUint248(
                    MemoryPointer mPtr
                ) internal pure returns (uint248 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the uint256 at `mPtr` in memory.
                function readUint256(
                    MemoryPointer mPtr
                ) internal pure returns (uint256 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the int8 at `mPtr` in memory.
                function readInt8(MemoryPointer mPtr) internal pure returns (int8 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the int16 at `mPtr` in memory.
                function readInt16(MemoryPointer mPtr) internal pure returns (int16 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the int24 at `mPtr` in memory.
                function readInt24(MemoryPointer mPtr) internal pure returns (int24 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the int32 at `mPtr` in memory.
                function readInt32(MemoryPointer mPtr) internal pure returns (int32 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the int40 at `mPtr` in memory.
                function readInt40(MemoryPointer mPtr) internal pure returns (int40 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the int48 at `mPtr` in memory.
                function readInt48(MemoryPointer mPtr) internal pure returns (int48 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the int56 at `mPtr` in memory.
                function readInt56(MemoryPointer mPtr) internal pure returns (int56 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the int64 at `mPtr` in memory.
                function readInt64(MemoryPointer mPtr) internal pure returns (int64 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the int72 at `mPtr` in memory.
                function readInt72(MemoryPointer mPtr) internal pure returns (int72 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the int80 at `mPtr` in memory.
                function readInt80(MemoryPointer mPtr) internal pure returns (int80 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the int88 at `mPtr` in memory.
                function readInt88(MemoryPointer mPtr) internal pure returns (int88 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the int96 at `mPtr` in memory.
                function readInt96(MemoryPointer mPtr) internal pure returns (int96 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the int104 at `mPtr` in memory.
                function readInt104(
                    MemoryPointer mPtr
                ) internal pure returns (int104 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the int112 at `mPtr` in memory.
                function readInt112(
                    MemoryPointer mPtr
                ) internal pure returns (int112 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the int120 at `mPtr` in memory.
                function readInt120(
                    MemoryPointer mPtr
                ) internal pure returns (int120 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the int128 at `mPtr` in memory.
                function readInt128(
                    MemoryPointer mPtr
                ) internal pure returns (int128 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the int136 at `mPtr` in memory.
                function readInt136(
                    MemoryPointer mPtr
                ) internal pure returns (int136 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the int144 at `mPtr` in memory.
                function readInt144(
                    MemoryPointer mPtr
                ) internal pure returns (int144 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the int152 at `mPtr` in memory.
                function readInt152(
                    MemoryPointer mPtr
                ) internal pure returns (int152 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the int160 at `mPtr` in memory.
                function readInt160(
                    MemoryPointer mPtr
                ) internal pure returns (int160 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the int168 at `mPtr` in memory.
                function readInt168(
                    MemoryPointer mPtr
                ) internal pure returns (int168 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the int176 at `mPtr` in memory.
                function readInt176(
                    MemoryPointer mPtr
                ) internal pure returns (int176 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the int184 at `mPtr` in memory.
                function readInt184(
                    MemoryPointer mPtr
                ) internal pure returns (int184 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the int192 at `mPtr` in memory.
                function readInt192(
                    MemoryPointer mPtr
                ) internal pure returns (int192 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the int200 at `mPtr` in memory.
                function readInt200(
                    MemoryPointer mPtr
                ) internal pure returns (int200 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the int208 at `mPtr` in memory.
                function readInt208(
                    MemoryPointer mPtr
                ) internal pure returns (int208 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the int216 at `mPtr` in memory.
                function readInt216(
                    MemoryPointer mPtr
                ) internal pure returns (int216 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the int224 at `mPtr` in memory.
                function readInt224(
                    MemoryPointer mPtr
                ) internal pure returns (int224 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the int232 at `mPtr` in memory.
                function readInt232(
                    MemoryPointer mPtr
                ) internal pure returns (int232 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the int240 at `mPtr` in memory.
                function readInt240(
                    MemoryPointer mPtr
                ) internal pure returns (int240 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the int248 at `mPtr` in memory.
                function readInt248(
                    MemoryPointer mPtr
                ) internal pure returns (int248 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
                /// @dev Reads the int256 at `mPtr` in memory.
                function readInt256(
                    MemoryPointer mPtr
                ) internal pure returns (int256 value) {
                    assembly {
                        value := mload(mPtr)
                    }
                }
            }
            library MemoryWriters {
                /// @dev Writes `valuePtr` to memory at `mPtr`.
                function write(MemoryPointer mPtr, MemoryPointer valuePtr) internal pure {
                    assembly {
                        mstore(mPtr, valuePtr)
                    }
                }
                /// @dev Writes a boolean `value` to `mPtr` in memory.
                function write(MemoryPointer mPtr, bool value) internal pure {
                    assembly {
                        mstore(mPtr, value)
                    }
                }
                /// @dev Writes an address `value` to `mPtr` in memory.
                function write(MemoryPointer mPtr, address value) internal pure {
                    assembly {
                        mstore(mPtr, value)
                    }
                }
                /// @dev Writes a bytes32 `value` to `mPtr` in memory.
                /// Separate name to disambiguate literal write parameters.
                function writeBytes32(MemoryPointer mPtr, bytes32 value) internal pure {
                    assembly {
                        mstore(mPtr, value)
                    }
                }
                /// @dev Writes a uint256 `value` to `mPtr` in memory.
                function write(MemoryPointer mPtr, uint256 value) internal pure {
                    assembly {
                        mstore(mPtr, value)
                    }
                }
                /// @dev Writes an int256 `value` to `mPtr` in memory.
                /// Separate name to disambiguate literal write parameters.
                function writeInt(MemoryPointer mPtr, int256 value) internal pure {
                    assembly {
                        mstore(mPtr, value)
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.13;
            import {
                BasicOrderType,
                ItemType,
                OrderType,
                Side
            } from "./ConsiderationEnums.sol";
            import {
                CalldataPointer,
                MemoryPointer
            } from "../helpers/PointerLibraries.sol";
            /**
             * @dev An order contains eleven components: an offerer, a zone (or account that
             *      can cancel the order or restrict who can fulfill the order depending on
             *      the type), the order type (specifying partial fill support as well as
             *      restricted order status), the start and end time, a hash that will be
             *      provided to the zone when validating restricted orders, a salt, a key
             *      corresponding to a given conduit, a counter, and an arbitrary number of
             *      offer items that can be spent along with consideration items that must
             *      be received by their respective recipient.
             */
            struct OrderComponents {
                address offerer;
                address zone;
                OfferItem[] offer;
                ConsiderationItem[] consideration;
                OrderType orderType;
                uint256 startTime;
                uint256 endTime;
                bytes32 zoneHash;
                uint256 salt;
                bytes32 conduitKey;
                uint256 counter;
            }
            /**
             * @dev An offer item has five components: an item type (ETH or other native
             *      tokens, ERC20, ERC721, and ERC1155, as well as criteria-based ERC721 and
             *      ERC1155), a token address, a dual-purpose "identifierOrCriteria"
             *      component that will either represent a tokenId or a merkle root
             *      depending on the item type, and a start and end amount that support
             *      increasing or decreasing amounts over the duration of the respective
             *      order.
             */
            struct OfferItem {
                ItemType itemType;
                address token;
                uint256 identifierOrCriteria;
                uint256 startAmount;
                uint256 endAmount;
            }
            /**
             * @dev A consideration item has the same five components as an offer item and
             *      an additional sixth component designating the required recipient of the
             *      item.
             */
            struct ConsiderationItem {
                ItemType itemType;
                address token;
                uint256 identifierOrCriteria;
                uint256 startAmount;
                uint256 endAmount;
                address payable recipient;
            }
            /**
             * @dev A spent item is translated from a utilized offer item and has four
             *      components: an item type (ETH or other native tokens, ERC20, ERC721, and
             *      ERC1155), a token address, a tokenId, and an amount.
             */
            struct SpentItem {
                ItemType itemType;
                address token;
                uint256 identifier;
                uint256 amount;
            }
            /**
             * @dev A received item is translated from a utilized consideration item and has
             *      the same four components as a spent item, as well as an additional fifth
             *      component designating the required recipient of the item.
             */
            struct ReceivedItem {
                ItemType itemType;
                address token;
                uint256 identifier;
                uint256 amount;
                address payable recipient;
            }
            /**
             * @dev For basic orders involving ETH / native / ERC20 <=> ERC721 / ERC1155
             *      matching, a group of six functions may be called that only requires a
             *      subset of the usual order arguments. Note the use of a "basicOrderType"
             *      enum; this represents both the usual order type as well as the "route"
             *      of the basic order (a simple derivation function for the basic order
             *      type is `basicOrderType = orderType + (4 * basicOrderRoute)`.)
             */
            struct BasicOrderParameters {
                // calldata offset
                address considerationToken; // 0x24
                uint256 considerationIdentifier; // 0x44
                uint256 considerationAmount; // 0x64
                address payable offerer; // 0x84
                address zone; // 0xa4
                address offerToken; // 0xc4
                uint256 offerIdentifier; // 0xe4
                uint256 offerAmount; // 0x104
                BasicOrderType basicOrderType; // 0x124
                uint256 startTime; // 0x144
                uint256 endTime; // 0x164
                bytes32 zoneHash; // 0x184
                uint256 salt; // 0x1a4
                bytes32 offererConduitKey; // 0x1c4
                bytes32 fulfillerConduitKey; // 0x1e4
                uint256 totalOriginalAdditionalRecipients; // 0x204
                AdditionalRecipient[] additionalRecipients; // 0x224
                bytes signature; // 0x244
                // Total length, excluding dynamic array data: 0x264 (580)
            }
            /**
             * @dev Basic orders can supply any number of additional recipients, with the
             *      implied assumption that they are supplied from the offered ETH (or other
             *      native token) or ERC20 token for the order.
             */
            struct AdditionalRecipient {
                uint256 amount;
                address payable recipient;
            }
            /**
             * @dev The full set of order components, with the exception of the counter,
             *      must be supplied when fulfilling more sophisticated orders or groups of
             *      orders. The total number of original consideration items must also be
             *      supplied, as the caller may specify additional consideration items.
             */
            struct OrderParameters {
                address offerer; // 0x00
                address zone; // 0x20
                OfferItem[] offer; // 0x40
                ConsiderationItem[] consideration; // 0x60
                OrderType orderType; // 0x80
                uint256 startTime; // 0xa0
                uint256 endTime; // 0xc0
                bytes32 zoneHash; // 0xe0
                uint256 salt; // 0x100
                bytes32 conduitKey; // 0x120
                uint256 totalOriginalConsiderationItems; // 0x140
                // offer.length                          // 0x160
            }
            /**
             * @dev Orders require a signature in addition to the other order parameters.
             */
            struct Order {
                OrderParameters parameters;
                bytes signature;
            }
            /**
             * @dev Advanced orders include a numerator (i.e. a fraction to attempt to fill)
             *      and a denominator (the total size of the order) in addition to the
             *      signature and other order parameters. It also supports an optional field
             *      for supplying extra data; this data will be provided to the zone if the
             *      order type is restricted and the zone is not the caller, or will be
             *      provided to the offerer as context for contract order types.
             */
            struct AdvancedOrder {
                OrderParameters parameters;
                uint120 numerator;
                uint120 denominator;
                bytes signature;
                bytes extraData;
            }
            /**
             * @dev Orders can be validated (either explicitly via `validate`, or as a
             *      consequence of a full or partial fill), specifically cancelled (they can
             *      also be cancelled in bulk via incrementing a per-zone counter), and
             *      partially or fully filled (with the fraction filled represented by a
             *      numerator and denominator).
             */
            struct OrderStatus {
                bool isValidated;
                bool isCancelled;
                uint120 numerator;
                uint120 denominator;
            }
            /**
             * @dev A criteria resolver specifies an order, side (offer vs. consideration),
             *      and item index. It then provides a chosen identifier (i.e. tokenId)
             *      alongside a merkle proof demonstrating the identifier meets the required
             *      criteria.
             */
            struct CriteriaResolver {
                uint256 orderIndex;
                Side side;
                uint256 index;
                uint256 identifier;
                bytes32[] criteriaProof;
            }
            /**
             * @dev A fulfillment is applied to a group of orders. It decrements a series of
             *      offer and consideration items, then generates a single execution
             *      element. A given fulfillment can be applied to as many offer and
             *      consideration items as desired, but must contain at least one offer and
             *      at least one consideration that match. The fulfillment must also remain
             *      consistent on all key parameters across all offer items (same offerer,
             *      token, type, tokenId, and conduit preference) as well as across all
             *      consideration items (token, type, tokenId, and recipient).
             */
            struct Fulfillment {
                FulfillmentComponent[] offerComponents;
                FulfillmentComponent[] considerationComponents;
            }
            /**
             * @dev Each fulfillment component contains one index referencing a specific
             *      order and another referencing a specific offer or consideration item.
             */
            struct FulfillmentComponent {
                uint256 orderIndex;
                uint256 itemIndex;
            }
            /**
             * @dev An execution is triggered once all consideration items have been zeroed
             *      out. It sends the item in question from the offerer to the item's
             *      recipient, optionally sourcing approvals from either this contract
             *      directly or from the offerer's chosen conduit if one is specified. An
             *      execution is not provided as an argument, but rather is derived via
             *      orders, criteria resolvers, and fulfillments (where the total number of
             *      executions will be less than or equal to the total number of indicated
             *      fulfillments) and returned as part of `matchOrders`.
             */
            struct Execution {
                ReceivedItem item;
                address offerer;
                bytes32 conduitKey;
            }
            /**
             * @dev Restricted orders are validated post-execution by calling validateOrder
             *      on the zone. This struct provides context about the order fulfillment
             *      and any supplied extraData, as well as all order hashes fulfilled in a
             *      call to a match or fulfillAvailable method.
             */
            struct ZoneParameters {
                bytes32 orderHash;
                address fulfiller;
                address offerer;
                SpentItem[] offer;
                ReceivedItem[] consideration;
                bytes extraData;
                bytes32[] orderHashes;
                uint256 startTime;
                uint256 endTime;
                bytes32 zoneHash;
            }
            /**
             * @dev Zones and contract offerers can communicate which schemas they implement
             *      along with any associated metadata related to each schema.
             */
            struct Schema {
                uint256 id;
                bytes metadata;
            }
            using StructPointers for OrderComponents global;
            using StructPointers for OfferItem global;
            using StructPointers for ConsiderationItem global;
            using StructPointers for SpentItem global;
            using StructPointers for ReceivedItem global;
            using StructPointers for BasicOrderParameters global;
            using StructPointers for AdditionalRecipient global;
            using StructPointers for OrderParameters global;
            using StructPointers for Order global;
            using StructPointers for AdvancedOrder global;
            using StructPointers for OrderStatus global;
            using StructPointers for CriteriaResolver global;
            using StructPointers for Fulfillment global;
            using StructPointers for FulfillmentComponent global;
            using StructPointers for Execution global;
            using StructPointers for ZoneParameters global;
            /**
             * @dev This library provides a set of functions for converting structs to
             *      pointers.
             */
            library StructPointers {
                /**
                 * @dev Get a MemoryPointer from OrderComponents.
                 *
                 * @param obj The OrderComponents object.
                 *
                 * @return ptr The MemoryPointer.
                 */
                function toMemoryPointer(
                    OrderComponents memory obj
                ) internal pure returns (MemoryPointer ptr) {
                    assembly {
                        ptr := obj
                    }
                }
                /**
                 * @dev Get a CalldataPointer from OrderComponents.
                 *
                 * @param obj The OrderComponents object.
                 *
                 * @return ptr The CalldataPointer.
                 */
                function toCalldataPointer(
                    OrderComponents calldata obj
                ) internal pure returns (CalldataPointer ptr) {
                    assembly {
                        ptr := obj
                    }
                }
                /**
                 * @dev Get a MemoryPointer from OfferItem.
                 *
                 * @param obj The OfferItem object.
                 *
                 * @return ptr The MemoryPointer.
                 */
                function toMemoryPointer(
                    OfferItem memory obj
                ) internal pure returns (MemoryPointer ptr) {
                    assembly {
                        ptr := obj
                    }
                }
                /**
                 * @dev Get a CalldataPointer from OfferItem.
                 *
                 * @param obj The OfferItem object.
                 *
                 * @return ptr The CalldataPointer.
                 */
                function toCalldataPointer(
                    OfferItem calldata obj
                ) internal pure returns (CalldataPointer ptr) {
                    assembly {
                        ptr := obj
                    }
                }
                /**
                 * @dev Get a MemoryPointer from ConsiderationItem.
                 *
                 * @param obj The ConsiderationItem object.
                 *
                 * @return ptr The MemoryPointer.
                 */
                function toMemoryPointer(
                    ConsiderationItem memory obj
                ) internal pure returns (MemoryPointer ptr) {
                    assembly {
                        ptr := obj
                    }
                }
                /**
                 * @dev Get a CalldataPointer from ConsiderationItem.
                 *
                 * @param obj The ConsiderationItem object.
                 *
                 * @return ptr The CalldataPointer.
                 */
                function toCalldataPointer(
                    ConsiderationItem calldata obj
                ) internal pure returns (CalldataPointer ptr) {
                    assembly {
                        ptr := obj
                    }
                }
                /**
                 * @dev Get a MemoryPointer from SpentItem.
                 *
                 * @param obj The SpentItem object.
                 *
                 * @return ptr The MemoryPointer.
                 */
                function toMemoryPointer(
                    SpentItem memory obj
                ) internal pure returns (MemoryPointer ptr) {
                    assembly {
                        ptr := obj
                    }
                }
                /**
                 * @dev Get a CalldataPointer from SpentItem.
                 *
                 * @param obj The SpentItem object.
                 *
                 * @return ptr The CalldataPointer.
                 */
                function toCalldataPointer(
                    SpentItem calldata obj
                ) internal pure returns (CalldataPointer ptr) {
                    assembly {
                        ptr := obj
                    }
                }
                /**
                 * @dev Get a MemoryPointer from ReceivedItem.
                 *
                 * @param obj The ReceivedItem object.
                 *
                 * @return ptr The MemoryPointer.
                 */
                function toMemoryPointer(
                    ReceivedItem memory obj
                ) internal pure returns (MemoryPointer ptr) {
                    assembly {
                        ptr := obj
                    }
                }
                /**
                 * @dev Get a CalldataPointer from ReceivedItem.
                 *
                 * @param obj The ReceivedItem object.
                 *
                 * @return ptr The CalldataPointer.
                 */
                function toCalldataPointer(
                    ReceivedItem calldata obj
                ) internal pure returns (CalldataPointer ptr) {
                    assembly {
                        ptr := obj
                    }
                }
                /**
                 * @dev Get a MemoryPointer from BasicOrderParameters.
                 *
                 * @param obj The BasicOrderParameters object.
                 *
                 * @return ptr The MemoryPointer.
                 */
                function toMemoryPointer(
                    BasicOrderParameters memory obj
                ) internal pure returns (MemoryPointer ptr) {
                    assembly {
                        ptr := obj
                    }
                }
                /**
                 * @dev Get a CalldataPointer from BasicOrderParameters.
                 *
                 * @param obj The BasicOrderParameters object.
                 *
                 * @return ptr The CalldataPointer.
                 */
                function toCalldataPointer(
                    BasicOrderParameters calldata obj
                ) internal pure returns (CalldataPointer ptr) {
                    assembly {
                        ptr := obj
                    }
                }
                /**
                 * @dev Get a MemoryPointer from AdditionalRecipient.
                 *
                 * @param obj The AdditionalRecipient object.
                 *
                 * @return ptr The MemoryPointer.
                 */
                function toMemoryPointer(
                    AdditionalRecipient memory obj
                ) internal pure returns (MemoryPointer ptr) {
                    assembly {
                        ptr := obj
                    }
                }
                /**
                 * @dev Get a CalldataPointer from AdditionalRecipient.
                 *
                 * @param obj The AdditionalRecipient object.
                 *
                 * @return ptr The CalldataPointer.
                 */
                function toCalldataPointer(
                    AdditionalRecipient calldata obj
                ) internal pure returns (CalldataPointer ptr) {
                    assembly {
                        ptr := obj
                    }
                }
                /**
                 * @dev Get a MemoryPointer from OrderParameters.
                 *
                 * @param obj The OrderParameters object.
                 *
                 * @return ptr The MemoryPointer.
                 */
                function toMemoryPointer(
                    OrderParameters memory obj
                ) internal pure returns (MemoryPointer ptr) {
                    assembly {
                        ptr := obj
                    }
                }
                /**
                 * @dev Get a CalldataPointer from OrderParameters.
                 *
                 * @param obj The OrderParameters object.
                 *
                 * @return ptr The CalldataPointer.
                 */
                function toCalldataPointer(
                    OrderParameters calldata obj
                ) internal pure returns (CalldataPointer ptr) {
                    assembly {
                        ptr := obj
                    }
                }
                /**
                 * @dev Get a MemoryPointer from Order.
                 *
                 * @param obj The Order object.
                 *
                 * @return ptr The MemoryPointer.
                 */
                function toMemoryPointer(
                    Order memory obj
                ) internal pure returns (MemoryPointer ptr) {
                    assembly {
                        ptr := obj
                    }
                }
                /**
                 * @dev Get a CalldataPointer from Order.
                 *
                 * @param obj The Order object.
                 *
                 * @return ptr The CalldataPointer.
                 */
                function toCalldataPointer(
                    Order calldata obj
                ) internal pure returns (CalldataPointer ptr) {
                    assembly {
                        ptr := obj
                    }
                }
                /**
                 * @dev Get a MemoryPointer from AdvancedOrder.
                 *
                 * @param obj The AdvancedOrder object.
                 *
                 * @return ptr The MemoryPointer.
                 */
                function toMemoryPointer(
                    AdvancedOrder memory obj
                ) internal pure returns (MemoryPointer ptr) {
                    assembly {
                        ptr := obj
                    }
                }
                /**
                 * @dev Get a CalldataPointer from AdvancedOrder.
                 *
                 * @param obj The AdvancedOrder object.
                 *
                 * @return ptr The CalldataPointer.
                 */
                function toCalldataPointer(
                    AdvancedOrder calldata obj
                ) internal pure returns (CalldataPointer ptr) {
                    assembly {
                        ptr := obj
                    }
                }
                /**
                 * @dev Get a MemoryPointer from OrderStatus.
                 *
                 * @param obj The OrderStatus object.
                 *
                 * @return ptr The MemoryPointer.
                 */
                function toMemoryPointer(
                    OrderStatus memory obj
                ) internal pure returns (MemoryPointer ptr) {
                    assembly {
                        ptr := obj
                    }
                }
                /**
                 * @dev Get a CalldataPointer from OrderStatus.
                 *
                 * @param obj The OrderStatus object.
                 *
                 * @return ptr The CalldataPointer.
                 */
                function toCalldataPointer(
                    OrderStatus calldata obj
                ) internal pure returns (CalldataPointer ptr) {
                    assembly {
                        ptr := obj
                    }
                }
                /**
                 * @dev Get a MemoryPointer from CriteriaResolver.
                 *
                 * @param obj The CriteriaResolver object.
                 *
                 * @return ptr The MemoryPointer.
                 */
                function toMemoryPointer(
                    CriteriaResolver memory obj
                ) internal pure returns (MemoryPointer ptr) {
                    assembly {
                        ptr := obj
                    }
                }
                /**
                 * @dev Get a CalldataPointer from CriteriaResolver.
                 *
                 * @param obj The CriteriaResolver object.
                 *
                 * @return ptr The CalldataPointer.
                 */
                function toCalldataPointer(
                    CriteriaResolver calldata obj
                ) internal pure returns (CalldataPointer ptr) {
                    assembly {
                        ptr := obj
                    }
                }
                /**
                 * @dev Get a MemoryPointer from Fulfillment.
                 *
                 * @param obj The Fulfillment object.
                 *
                 * @return ptr The MemoryPointer.
                 */
                function toMemoryPointer(
                    Fulfillment memory obj
                ) internal pure returns (MemoryPointer ptr) {
                    assembly {
                        ptr := obj
                    }
                }
                /**
                 * @dev Get a CalldataPointer from Fulfillment.
                 *
                 * @param obj The Fulfillment object.
                 *
                 * @return ptr The CalldataPointer.
                 */
                function toCalldataPointer(
                    Fulfillment calldata obj
                ) internal pure returns (CalldataPointer ptr) {
                    assembly {
                        ptr := obj
                    }
                }
                /**
                 * @dev Get a MemoryPointer from FulfillmentComponent.
                 *
                 * @param obj The FulfillmentComponent object.
                 *
                 * @return ptr The MemoryPointer.
                 */
                function toMemoryPointer(
                    FulfillmentComponent memory obj
                ) internal pure returns (MemoryPointer ptr) {
                    assembly {
                        ptr := obj
                    }
                }
                /**
                 * @dev Get a CalldataPointer from FulfillmentComponent.
                 *
                 * @param obj The FulfillmentComponent object.
                 *
                 * @return ptr The CalldataPointer.
                 */
                function toCalldataPointer(
                    FulfillmentComponent calldata obj
                ) internal pure returns (CalldataPointer ptr) {
                    assembly {
                        ptr := obj
                    }
                }
                /**
                 * @dev Get a MemoryPointer from Execution.
                 *
                 * @param obj The Execution object.
                 *
                 * @return ptr The MemoryPointer.
                 */
                function toMemoryPointer(
                    Execution memory obj
                ) internal pure returns (MemoryPointer ptr) {
                    assembly {
                        ptr := obj
                    }
                }
                /**
                 * @dev Get a CalldataPointer from Execution.
                 *
                 * @param obj The Execution object.
                 *
                 * @return ptr The CalldataPointer.
                 */
                function toCalldataPointer(
                    Execution calldata obj
                ) internal pure returns (CalldataPointer ptr) {
                    assembly {
                        ptr := obj
                    }
                }
                /**
                 * @dev Get a MemoryPointer from ZoneParameters.
                 *
                 * @param obj The ZoneParameters object.
                 *
                 * @return ptr The MemoryPointer.
                 */
                function toMemoryPointer(
                    ZoneParameters memory obj
                ) internal pure returns (MemoryPointer ptr) {
                    assembly {
                        ptr := obj
                    }
                }
                /**
                 * @dev Get a CalldataPointer from ZoneParameters.
                 *
                 * @param obj The ZoneParameters object.
                 *
                 * @return ptr The CalldataPointer.
                 */
                function toCalldataPointer(
                    ZoneParameters calldata obj
                ) internal pure returns (CalldataPointer ptr) {
                    assembly {
                        ptr := obj
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.17;
            import { Side } from "./ConsiderationEnums.sol";
            import {
                BadFraction_error_length,
                BadFraction_error_selector,
                CannotCancelOrder_error_length,
                CannotCancelOrder_error_selector,
                ConsiderationLengthNotEqualToTotalOriginal_error_length,
                ConsiderationLengthNotEqualToTotalOriginal_error_selector,
                ConsiderationNotMet_error_considerationIndex_ptr,
                ConsiderationNotMet_error_length,
                ConsiderationNotMet_error_orderIndex_ptr,
                ConsiderationNotMet_error_selector,
                ConsiderationNotMet_error_shortfallAmount_ptr,
                CriteriaNotEnabledForItem_error_length,
                CriteriaNotEnabledForItem_error_selector,
                Error_selector_offset,
                InsufficientNativeTokensSupplied_error_length,
                InsufficientNativeTokensSupplied_error_selector,
                InvalidBasicOrderParameterEncoding_error_length,
                InvalidBasicOrderParameterEncoding_error_selector,
                InvalidCallToConduit_error_conduit_ptr,
                InvalidCallToConduit_error_length,
                InvalidCallToConduit_error_selector,
                InvalidConduit_error_conduit_ptr,
                InvalidConduit_error_conduitKey_ptr,
                InvalidConduit_error_length,
                InvalidConduit_error_selector,
                InvalidContractOrder_error_length,
                InvalidContractOrder_error_orderHash_ptr,
                InvalidContractOrder_error_selector,
                InvalidERC721TransferAmount_error_amount_ptr,
                InvalidERC721TransferAmount_error_length,
                InvalidERC721TransferAmount_error_selector,
                InvalidMsgValue_error_length,
                InvalidMsgValue_error_selector,
                InvalidMsgValue_error_value_ptr,
                InvalidNativeOfferItem_error_length,
                InvalidNativeOfferItem_error_selector,
                InvalidProof_error_length,
                InvalidProof_error_selector,
                InvalidTime_error_endTime_ptr,
                InvalidTime_error_length,
                InvalidTime_error_selector,
                InvalidTime_error_startTime_ptr,
                MismatchedOfferAndConsiderationComponents_error_idx_ptr,
                MismatchedOfferAndConsiderationComponents_error_length,
                MismatchedOfferAndConsiderationComponents_error_selector,
                MissingFulfillmentComponentOnAggregation_error_length,
                MissingFulfillmentComponentOnAggregation_error_selector,
                MissingFulfillmentComponentOnAggregation_error_side_ptr,
                MissingOriginalConsiderationItems_error_length,
                MissingOriginalConsiderationItems_error_selector,
                NoReentrantCalls_error_length,
                NoReentrantCalls_error_selector,
                NoSpecifiedOrdersAvailable_error_length,
                NoSpecifiedOrdersAvailable_error_selector,
                OfferAndConsiderationRequiredOnFulfillment_error_length,
                OfferAndConsiderationRequiredOnFulfillment_error_selector,
                OrderAlreadyFilled_error_length,
                OrderAlreadyFilled_error_orderHash_ptr,
                OrderAlreadyFilled_error_selector,
                OrderCriteriaResolverOutOfRange_error_length,
                OrderCriteriaResolverOutOfRange_error_selector,
                OrderCriteriaResolverOutOfRange_error_side_ptr,
                OrderIsCancelled_error_length,
                OrderIsCancelled_error_orderHash_ptr,
                OrderIsCancelled_error_selector,
                OrderPartiallyFilled_error_length,
                OrderPartiallyFilled_error_orderHash_ptr,
                OrderPartiallyFilled_error_selector,
                PartialFillsNotEnabledForOrder_error_length,
                PartialFillsNotEnabledForOrder_error_selector,
                UnresolvedConsiderationCriteria_error_considerationIdx_ptr,
                UnresolvedConsiderationCriteria_error_length,
                UnresolvedConsiderationCriteria_error_orderIndex_ptr,
                UnresolvedConsiderationCriteria_error_selector,
                UnresolvedOfferCriteria_error_length,
                UnresolvedOfferCriteria_error_offerIndex_ptr,
                UnresolvedOfferCriteria_error_orderIndex_ptr,
                UnresolvedOfferCriteria_error_selector,
                UnusedItemParameters_error_length,
                UnusedItemParameters_error_selector
            } from "./ConsiderationErrorConstants.sol";
            /**
             * @dev Reverts the current transaction with a "BadFraction" error message.
             */
            function _revertBadFraction() pure {
                assembly {
                    // Store left-padded selector with push4 (reduces bytecode),
                    // mem[28:32] = selector
                    mstore(0, BadFraction_error_selector)
                    // revert(abi.encodeWithSignature("BadFraction()"))
                    revert(Error_selector_offset, BadFraction_error_length)
                }
            }
            /**
             * @dev Reverts the current transaction with a "ConsiderationNotMet" error
             *      message, including the provided order index, consideration index, and
             *      shortfall amount.
             *
             * @param orderIndex         The index of the order that did not meet the
             *                           consideration criteria.
             * @param considerationIndex The index of the consideration item that did not
             *                           meet its criteria.
             * @param shortfallAmount    The amount by which the consideration criteria were
             *                           not met.
             */
            function _revertConsiderationNotMet(
                uint256 orderIndex,
                uint256 considerationIndex,
                uint256 shortfallAmount
            ) pure {
                assembly {
                    // Store left-padded selector with push4 (reduces bytecode),
                    // mem[28:32] = selector
                    mstore(0, ConsiderationNotMet_error_selector)
                    // Store arguments.
                    mstore(ConsiderationNotMet_error_orderIndex_ptr, orderIndex)
                    mstore(
                        ConsiderationNotMet_error_considerationIndex_ptr,
                        considerationIndex
                    )
                    mstore(ConsiderationNotMet_error_shortfallAmount_ptr, shortfallAmount)
                    // revert(abi.encodeWithSignature(
                    //     "ConsiderationNotMet(uint256,uint256,uint256)",
                    //     orderIndex,
                    //     considerationIndex,
                    //     shortfallAmount
                    // ))
                    revert(Error_selector_offset, ConsiderationNotMet_error_length)
                }
            }
            /**
             * @dev Reverts the current transaction with a "CriteriaNotEnabledForItem" error
             *      message.
             */
            function _revertCriteriaNotEnabledForItem() pure {
                assembly {
                    // Store left-padded selector with push4 (reduces bytecode),
                    // mem[28:32] = selector
                    mstore(0, CriteriaNotEnabledForItem_error_selector)
                    // revert(abi.encodeWithSignature("CriteriaNotEnabledForItem()"))
                    revert(Error_selector_offset, CriteriaNotEnabledForItem_error_length)
                }
            }
            /**
             * @dev Reverts the current transaction with an
             *      "InsufficientNativeTokensSupplied" error message.
             */
            function _revertInsufficientNativeTokensSupplied() pure {
                assembly {
                    // Store left-padded selector with push4 (reduces bytecode),
                    // mem[28:32] = selector
                    mstore(0, InsufficientNativeTokensSupplied_error_selector)
                    // revert(abi.encodeWithSignature("InsufficientNativeTokensSupplied()"))
                    revert(
                        Error_selector_offset,
                        InsufficientNativeTokensSupplied_error_length
                    )
                }
            }
            /**
             * @dev Reverts the current transaction with an
             *      "InvalidBasicOrderParameterEncoding" error message.
             */
            function _revertInvalidBasicOrderParameterEncoding() pure {
                assembly {
                    // Store left-padded selector with push4 (reduces bytecode),
                    // mem[28:32] = selector
                    mstore(0, InvalidBasicOrderParameterEncoding_error_selector)
                    // revert(abi.encodeWithSignature(
                    //     "InvalidBasicOrderParameterEncoding()"
                    // ))
                    revert(
                        Error_selector_offset,
                        InvalidBasicOrderParameterEncoding_error_length
                    )
                }
            }
            /**
             * @dev Reverts the current transaction with an "InvalidCallToConduit" error
             *      message, including the provided address of the conduit that was called
             *      improperly.
             *
             * @param conduit The address of the conduit that was called improperly.
             */
            function _revertInvalidCallToConduit(address conduit) pure {
                assembly {
                    // Store left-padded selector with push4 (reduces bytecode),
                    // mem[28:32] = selector
                    mstore(0, InvalidCallToConduit_error_selector)
                    // Store argument.
                    mstore(InvalidCallToConduit_error_conduit_ptr, conduit)
                    // revert(abi.encodeWithSignature(
                    //     "InvalidCallToConduit(address)",
                    //     conduit
                    // ))
                    revert(Error_selector_offset, InvalidCallToConduit_error_length)
                }
            }
            /**
             * @dev Reverts the current transaction with an "CannotCancelOrder" error
             *      message.
             */
            function _revertCannotCancelOrder() pure {
                assembly {
                    // Store left-padded selector with push4 (reduces bytecode),
                    // mem[28:32] = selector
                    mstore(0, CannotCancelOrder_error_selector)
                    // revert(abi.encodeWithSignature("CannotCancelOrder()"))
                    revert(Error_selector_offset, CannotCancelOrder_error_length)
                }
            }
            /**
             * @dev Reverts the current transaction with an "InvalidConduit" error message,
             *      including the provided key and address of the invalid conduit.
             *
             * @param conduitKey    The key of the invalid conduit.
             * @param conduit       The address of the invalid conduit.
             */
            function _revertInvalidConduit(bytes32 conduitKey, address conduit) pure {
                assembly {
                    // Store left-padded selector with push4 (reduces bytecode),
                    // mem[28:32] = selector
                    mstore(0, InvalidConduit_error_selector)
                    // Store arguments.
                    mstore(InvalidConduit_error_conduitKey_ptr, conduitKey)
                    mstore(InvalidConduit_error_conduit_ptr, conduit)
                    // revert(abi.encodeWithSignature(
                    //     "InvalidConduit(bytes32,address)",
                    //     conduitKey,
                    //     conduit
                    // ))
                    revert(Error_selector_offset, InvalidConduit_error_length)
                }
            }
            /**
             * @dev Reverts the current transaction with an "InvalidERC721TransferAmount"
             *      error message.
             *
             * @param amount The invalid amount.
             */
            function _revertInvalidERC721TransferAmount(uint256 amount) pure {
                assembly {
                    // Store left-padded selector with push4 (reduces bytecode),
                    // mem[28:32] = selector
                    mstore(0, InvalidERC721TransferAmount_error_selector)
                    // Store argument.
                    mstore(InvalidERC721TransferAmount_error_amount_ptr, amount)
                    // revert(abi.encodeWithSignature(
                    //     "InvalidERC721TransferAmount(uint256)",
                    //     amount
                    // ))
                    revert(Error_selector_offset, InvalidERC721TransferAmount_error_length)
                }
            }
            /**
             * @dev Reverts the current transaction with an "InvalidMsgValue" error message,
             *      including the invalid value that was sent in the transaction's
             *      `msg.value` field.
             *
             * @param value The invalid value that was sent in the transaction's `msg.value`
             *              field.
             */
            function _revertInvalidMsgValue(uint256 value) pure {
                assembly {
                    // Store left-padded selector with push4 (reduces bytecode),
                    // mem[28:32] = selector
                    mstore(0, InvalidMsgValue_error_selector)
                    // Store argument.
                    mstore(InvalidMsgValue_error_value_ptr, value)
                    // revert(abi.encodeWithSignature("InvalidMsgValue(uint256)", value))
                    revert(Error_selector_offset, InvalidMsgValue_error_length)
                }
            }
            /**
             * @dev Reverts the current transaction with an "InvalidNativeOfferItem" error
             *      message.
             */
            function _revertInvalidNativeOfferItem() pure {
                assembly {
                    // Store left-padded selector with push4 (reduces bytecode),
                    // mem[28:32] = selector
                    mstore(0, InvalidNativeOfferItem_error_selector)
                    // revert(abi.encodeWithSignature("InvalidNativeOfferItem()"))
                    revert(Error_selector_offset, InvalidNativeOfferItem_error_length)
                }
            }
            /**
             * @dev Reverts the current transaction with an "InvalidProof" error message.
             */
            function _revertInvalidProof() pure {
                assembly {
                    // Store left-padded selector with push4 (reduces bytecode),
                    // mem[28:32] = selector
                    mstore(0, InvalidProof_error_selector)
                    // revert(abi.encodeWithSignature("InvalidProof()"))
                    revert(Error_selector_offset, InvalidProof_error_length)
                }
            }
            /**
             * @dev Reverts the current transaction with an "InvalidContractOrder" error
             *      message.
             *
             * @param orderHash The hash of the contract order that caused the error.
             */
            function _revertInvalidContractOrder(bytes32 orderHash) pure {
                assembly {
                    // Store left-padded selector with push4 (reduces bytecode),
                    // mem[28:32] = selector
                    mstore(0, InvalidContractOrder_error_selector)
                    // Store arguments.
                    mstore(InvalidContractOrder_error_orderHash_ptr, orderHash)
                    // revert(abi.encodeWithSignature(
                    //     "InvalidContractOrder(bytes32)",
                    //     orderHash
                    // ))
                    revert(Error_selector_offset, InvalidContractOrder_error_length)
                }
            }
            /**
             * @dev Reverts the current transaction with an "InvalidTime" error message.
             *
             * @param startTime       The time at which the order becomes active.
             * @param endTime         The time at which the order becomes inactive.
             */
            function _revertInvalidTime(uint256 startTime, uint256 endTime) pure {
                assembly {
                    // Store left-padded selector with push4 (reduces bytecode),
                    // mem[28:32] = selector
                    mstore(0, InvalidTime_error_selector)
                    // Store arguments.
                    mstore(InvalidTime_error_startTime_ptr, startTime)
                    mstore(InvalidTime_error_endTime_ptr, endTime)
                    // revert(abi.encodeWithSignature(
                    //     "InvalidTime(uint256,uint256)",
                    //     startTime,
                    //     endTime
                    // ))
                    revert(Error_selector_offset, InvalidTime_error_length)
                }
            }
            /**
             * @dev Reverts execution with a
             *      "MismatchedFulfillmentOfferAndConsiderationComponents" error message.
             *
             * @param fulfillmentIndex         The index of the fulfillment that caused the
             *                                 error.
             */
            function _revertMismatchedFulfillmentOfferAndConsiderationComponents(
                uint256 fulfillmentIndex
            ) pure {
                assembly {
                    // Store left-padded selector with push4 (reduces bytecode),
                    // mem[28:32] = selector
                    mstore(0, MismatchedOfferAndConsiderationComponents_error_selector)
                    // Store fulfillment index argument.
                    mstore(
                        MismatchedOfferAndConsiderationComponents_error_idx_ptr,
                        fulfillmentIndex
                    )
                    // revert(abi.encodeWithSignature(
                    //     "MismatchedFulfillmentOfferAndConsiderationComponents(uint256)",
                    //     fulfillmentIndex
                    // ))
                    revert(
                        Error_selector_offset,
                        MismatchedOfferAndConsiderationComponents_error_length
                    )
                }
            }
            /**
             * @dev Reverts execution with a "MissingFulfillmentComponentOnAggregation"
             *       error message.
             *
             * @param side The side of the fulfillment component that is missing (0 for
             *             offer, 1 for consideration).
             *
             */
            function _revertMissingFulfillmentComponentOnAggregation(Side side) pure {
                assembly {
                    // Store left-padded selector with push4 (reduces bytecode),
                    // mem[28:32] = selector
                    mstore(0, MissingFulfillmentComponentOnAggregation_error_selector)
                    // Store argument.
                    mstore(MissingFulfillmentComponentOnAggregation_error_side_ptr, side)
                    // revert(abi.encodeWithSignature(
                    //     "MissingFulfillmentComponentOnAggregation(uint8)",
                    //     side
                    // ))
                    revert(
                        Error_selector_offset,
                        MissingFulfillmentComponentOnAggregation_error_length
                    )
                }
            }
            /**
             * @dev Reverts execution with a "MissingOriginalConsiderationItems" error
             *      message.
             */
            function _revertMissingOriginalConsiderationItems() pure {
                assembly {
                    // Store left-padded selector with push4 (reduces bytecode),
                    // mem[28:32] = selector
                    mstore(0, MissingOriginalConsiderationItems_error_selector)
                    // revert(abi.encodeWithSignature(
                    //     "MissingOriginalConsiderationItems()"
                    // ))
                    revert(
                        Error_selector_offset,
                        MissingOriginalConsiderationItems_error_length
                    )
                }
            }
            /**
             * @dev Reverts execution with a "NoReentrantCalls" error message.
             */
            function _revertNoReentrantCalls() pure {
                assembly {
                    // Store left-padded selector with push4 (reduces bytecode),
                    // mem[28:32] = selector
                    mstore(0, NoReentrantCalls_error_selector)
                    // revert(abi.encodeWithSignature("NoReentrantCalls()"))
                    revert(Error_selector_offset, NoReentrantCalls_error_length)
                }
            }
            /**
             * @dev Reverts execution with a "NoSpecifiedOrdersAvailable" error message.
             */
            function _revertNoSpecifiedOrdersAvailable() pure {
                assembly {
                    // Store left-padded selector with push4 (reduces bytecode),
                    // mem[28:32] = selector
                    mstore(0, NoSpecifiedOrdersAvailable_error_selector)
                    // revert(abi.encodeWithSignature("NoSpecifiedOrdersAvailable()"))
                    revert(Error_selector_offset, NoSpecifiedOrdersAvailable_error_length)
                }
            }
            /**
             * @dev Reverts execution with a "OfferAndConsiderationRequiredOnFulfillment"
             *      error message.
             */
            function _revertOfferAndConsiderationRequiredOnFulfillment() pure {
                assembly {
                    // Store left-padded selector with push4 (reduces bytecode),
                    // mem[28:32] = selector
                    mstore(0, OfferAndConsiderationRequiredOnFulfillment_error_selector)
                    // revert(abi.encodeWithSignature(
                    //     "OfferAndConsiderationRequiredOnFulfillment()"
                    // ))
                    revert(
                        Error_selector_offset,
                        OfferAndConsiderationRequiredOnFulfillment_error_length
                    )
                }
            }
            /**
             * @dev Reverts execution with an "OrderAlreadyFilled" error message.
             *
             * @param orderHash The hash of the order that has already been filled.
             */
            function _revertOrderAlreadyFilled(bytes32 orderHash) pure {
                assembly {
                    // Store left-padded selector with push4 (reduces bytecode),
                    // mem[28:32] = selector
                    mstore(0, OrderAlreadyFilled_error_selector)
                    // Store argument.
                    mstore(OrderAlreadyFilled_error_orderHash_ptr, orderHash)
                    // revert(abi.encodeWithSignature(
                    //     "OrderAlreadyFilled(bytes32)",
                    //     orderHash
                    // ))
                    revert(Error_selector_offset, OrderAlreadyFilled_error_length)
                }
            }
            /**
             * @dev Reverts execution with an "OrderCriteriaResolverOutOfRange" error
             *      message.
             *
             * @param side The side of the criteria that is missing (0 for offer, 1 for
             *             consideration).
             *
             */
            function _revertOrderCriteriaResolverOutOfRange(Side side) pure {
                assembly {
                    // Store left-padded selector with push4 (reduces bytecode),
                    // mem[28:32] = selector
                    mstore(0, OrderCriteriaResolverOutOfRange_error_selector)
                    // Store argument.
                    mstore(OrderCriteriaResolverOutOfRange_error_side_ptr, side)
                    // revert(abi.encodeWithSignature(
                    //     "OrderCriteriaResolverOutOfRange(uint8)",
                    //     side
                    // ))
                    revert(
                        Error_selector_offset,
                        OrderCriteriaResolverOutOfRange_error_length
                    )
                }
            }
            /**
             * @dev Reverts execution with an "OrderIsCancelled" error message.
             *
             * @param orderHash The hash of the order that has already been cancelled.
             */
            function _revertOrderIsCancelled(bytes32 orderHash) pure {
                assembly {
                    // Store left-padded selector with push4 (reduces bytecode),
                    // mem[28:32] = selector
                    mstore(0, OrderIsCancelled_error_selector)
                    // Store argument.
                    mstore(OrderIsCancelled_error_orderHash_ptr, orderHash)
                    // revert(abi.encodeWithSignature(
                    //     "OrderIsCancelled(bytes32)",
                    //     orderHash
                    // ))
                    revert(Error_selector_offset, OrderIsCancelled_error_length)
                }
            }
            /**
             * @dev Reverts execution with an "OrderPartiallyFilled" error message.
             *
             * @param orderHash The hash of the order that has already been partially
             *                  filled.
             */
            function _revertOrderPartiallyFilled(bytes32 orderHash) pure {
                assembly {
                    // Store left-padded selector with push4 (reduces bytecode),
                    // mem[28:32] = selector
                    mstore(0, OrderPartiallyFilled_error_selector)
                    // Store argument.
                    mstore(OrderPartiallyFilled_error_orderHash_ptr, orderHash)
                    // revert(abi.encodeWithSignature(
                    //     "OrderPartiallyFilled(bytes32)",
                    //     orderHash
                    // ))
                    revert(Error_selector_offset, OrderPartiallyFilled_error_length)
                }
            }
            /**
             * @dev Reverts execution with a "PartialFillsNotEnabledForOrder" error message.
             */
            function _revertPartialFillsNotEnabledForOrder() pure {
                assembly {
                    // Store left-padded selector with push4 (reduces bytecode),
                    // mem[28:32] = selector
                    mstore(0, PartialFillsNotEnabledForOrder_error_selector)
                    // revert(abi.encodeWithSignature("PartialFillsNotEnabledForOrder()"))
                    revert(
                        Error_selector_offset,
                        PartialFillsNotEnabledForOrder_error_length
                    )
                }
            }
            /**
             * @dev Reverts execution with an "UnresolvedConsiderationCriteria" error
             *      message.
             */
            function _revertUnresolvedConsiderationCriteria(
                uint256 orderIndex,
                uint256 considerationIndex
            ) pure {
                assembly {
                    // Store left-padded selector with push4 (reduces bytecode),
                    // mem[28:32] = selector
                    mstore(0, UnresolvedConsiderationCriteria_error_selector)
                    // Store orderIndex and considerationIndex arguments.
                    mstore(UnresolvedConsiderationCriteria_error_orderIndex_ptr, orderIndex)
                    mstore(
                        UnresolvedConsiderationCriteria_error_considerationIdx_ptr,
                        considerationIndex
                    )
                    // revert(abi.encodeWithSignature(
                    //     "UnresolvedConsiderationCriteria(uint256, uint256)",
                    //     orderIndex,
                    //     considerationIndex
                    // ))
                    revert(
                        Error_selector_offset,
                        UnresolvedConsiderationCriteria_error_length
                    )
                }
            }
            /**
             * @dev Reverts execution with an "UnresolvedOfferCriteria" error message.
             */
            function _revertUnresolvedOfferCriteria(
                uint256 orderIndex,
                uint256 offerIndex
            ) pure {
                assembly {
                    // Store left-padded selector with push4 (reduces bytecode),
                    // mem[28:32] = selector
                    mstore(0, UnresolvedOfferCriteria_error_selector)
                    // Store arguments.
                    mstore(UnresolvedOfferCriteria_error_orderIndex_ptr, orderIndex)
                    mstore(UnresolvedOfferCriteria_error_offerIndex_ptr, offerIndex)
                    // revert(abi.encodeWithSignature(
                    //     "UnresolvedOfferCriteria(uint256, uint256)",
                    //     orderIndex,
                    //     offerIndex
                    // ))
                    revert(Error_selector_offset, UnresolvedOfferCriteria_error_length)
                }
            }
            /**
             * @dev Reverts execution with an "UnusedItemParameters" error message.
             */
            function _revertUnusedItemParameters() pure {
                assembly {
                    // Store left-padded selector with push4 (reduces bytecode),
                    // mem[28:32] = selector
                    mstore(0, UnusedItemParameters_error_selector)
                    // revert(abi.encodeWithSignature("UnusedItemParameters()"))
                    revert(Error_selector_offset, UnusedItemParameters_error_length)
                }
            }
            /**
             * @dev Reverts execution with a "ConsiderationLengthNotEqualToTotalOriginal"
             *      error message.
             */
            function _revertConsiderationLengthNotEqualToTotalOriginal() pure {
                assembly {
                    // Store left-padded selector with push4 (reduces bytecode),
                    // mem[28:32] = selector
                    mstore(0, ConsiderationLengthNotEqualToTotalOriginal_error_selector)
                    // revert(abi.encodeWithSignature(
                    //     "ConsiderationLengthNotEqualToTotalOriginal()"
                    // ))
                    revert(
                        Error_selector_offset,
                        ConsiderationLengthNotEqualToTotalOriginal_error_length
                    )
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.13;
            enum OrderType {
                // 0: no partial fills, anyone can execute
                FULL_OPEN,
                // 1: partial fills supported, anyone can execute
                PARTIAL_OPEN,
                // 2: no partial fills, only offerer or zone can execute
                FULL_RESTRICTED,
                // 3: partial fills supported, only offerer or zone can execute
                PARTIAL_RESTRICTED,
                // 4: contract order type
                CONTRACT
            }
            enum BasicOrderType {
                // 0: no partial fills, anyone can execute
                ETH_TO_ERC721_FULL_OPEN,
                // 1: partial fills supported, anyone can execute
                ETH_TO_ERC721_PARTIAL_OPEN,
                // 2: no partial fills, only offerer or zone can execute
                ETH_TO_ERC721_FULL_RESTRICTED,
                // 3: partial fills supported, only offerer or zone can execute
                ETH_TO_ERC721_PARTIAL_RESTRICTED,
                // 4: no partial fills, anyone can execute
                ETH_TO_ERC1155_FULL_OPEN,
                // 5: partial fills supported, anyone can execute
                ETH_TO_ERC1155_PARTIAL_OPEN,
                // 6: no partial fills, only offerer or zone can execute
                ETH_TO_ERC1155_FULL_RESTRICTED,
                // 7: partial fills supported, only offerer or zone can execute
                ETH_TO_ERC1155_PARTIAL_RESTRICTED,
                // 8: no partial fills, anyone can execute
                ERC20_TO_ERC721_FULL_OPEN,
                // 9: partial fills supported, anyone can execute
                ERC20_TO_ERC721_PARTIAL_OPEN,
                // 10: no partial fills, only offerer or zone can execute
                ERC20_TO_ERC721_FULL_RESTRICTED,
                // 11: partial fills supported, only offerer or zone can execute
                ERC20_TO_ERC721_PARTIAL_RESTRICTED,
                // 12: no partial fills, anyone can execute
                ERC20_TO_ERC1155_FULL_OPEN,
                // 13: partial fills supported, anyone can execute
                ERC20_TO_ERC1155_PARTIAL_OPEN,
                // 14: no partial fills, only offerer or zone can execute
                ERC20_TO_ERC1155_FULL_RESTRICTED,
                // 15: partial fills supported, only offerer or zone can execute
                ERC20_TO_ERC1155_PARTIAL_RESTRICTED,
                // 16: no partial fills, anyone can execute
                ERC721_TO_ERC20_FULL_OPEN,
                // 17: partial fills supported, anyone can execute
                ERC721_TO_ERC20_PARTIAL_OPEN,
                // 18: no partial fills, only offerer or zone can execute
                ERC721_TO_ERC20_FULL_RESTRICTED,
                // 19: partial fills supported, only offerer or zone can execute
                ERC721_TO_ERC20_PARTIAL_RESTRICTED,
                // 20: no partial fills, anyone can execute
                ERC1155_TO_ERC20_FULL_OPEN,
                // 21: partial fills supported, anyone can execute
                ERC1155_TO_ERC20_PARTIAL_OPEN,
                // 22: no partial fills, only offerer or zone can execute
                ERC1155_TO_ERC20_FULL_RESTRICTED,
                // 23: partial fills supported, only offerer or zone can execute
                ERC1155_TO_ERC20_PARTIAL_RESTRICTED
            }
            enum BasicOrderRouteType {
                // 0: provide Ether (or other native token) to receive offered ERC721 item.
                ETH_TO_ERC721,
                // 1: provide Ether (or other native token) to receive offered ERC1155 item.
                ETH_TO_ERC1155,
                // 2: provide ERC20 item to receive offered ERC721 item.
                ERC20_TO_ERC721,
                // 3: provide ERC20 item to receive offered ERC1155 item.
                ERC20_TO_ERC1155,
                // 4: provide ERC721 item to receive offered ERC20 item.
                ERC721_TO_ERC20,
                // 5: provide ERC1155 item to receive offered ERC20 item.
                ERC1155_TO_ERC20
            }
            enum ItemType {
                // 0: ETH on mainnet, MATIC on polygon, etc.
                NATIVE,
                // 1: ERC20 items (ERC777 and ERC20 analogues could also technically work)
                ERC20,
                // 2: ERC721 items
                ERC721,
                // 3: ERC1155 items
                ERC1155,
                // 4: ERC721 items where a number of tokenIds are supported
                ERC721_WITH_CRITERIA,
                // 5: ERC1155 items where a number of ids are supported
                ERC1155_WITH_CRITERIA
            }
            enum Side {
                // 0: Items that can be spent
                OFFER,
                // 1: Items that must be received
                CONSIDERATION
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.17;
            import { ItemType, Side } from "./ConsiderationEnums.sol";
            import {
                AdvancedOrder,
                Execution,
                FulfillmentComponent,
                ReceivedItem
            } from "./ConsiderationStructs.sol";
            import {
                _revertMismatchedFulfillmentOfferAndConsiderationComponents,
                _revertMissingFulfillmentComponentOnAggregation,
                _revertOfferAndConsiderationRequiredOnFulfillment
            } from "./ConsiderationErrors.sol";
            import {
                FulfillmentApplicationErrors
            } from "../interfaces/FulfillmentApplicationErrors.sol";
            import {
                AdvancedOrder_numerator_offset,
                Common_amount_offset,
                Common_identifier_offset,
                Common_token_offset,
                Execution_conduit_offset,
                Execution_offerer_offset,
                Fulfillment_itemIndex_offset,
                OneWord,
                OneWordShift,
                OrderParameters_conduit_offset,
                OrderParameters_consideration_head_offset,
                OrderParameters_offer_head_offset,
                ReceivedItem_CommonParams_size,
                ReceivedItem_recipient_offset,
                ReceivedItem_size
            } from "./ConsiderationConstants.sol";
            import {
                Error_selector_offset,
                InvalidFulfillmentComponentData_error_length,
                InvalidFulfillmentComponentData_error_selector,
                MissingItemAmount_error_length,
                MissingItemAmount_error_selector,
                Panic_arithmetic,
                Panic_error_code_ptr,
                Panic_error_length,
                Panic_error_selector
            } from "./ConsiderationErrorConstants.sol";
            /**
             * @title FulfillmentApplier
             * @author 0age
             * @notice FulfillmentApplier contains logic related to applying fulfillments,
             *         both as part of order matching (where offer items are matched to
             *         consideration items) as well as fulfilling available orders (where
             *         order items and consideration items are independently aggregated).
             */
            contract FulfillmentApplier is FulfillmentApplicationErrors {
                /**
                 * @dev Internal pure function to match offer items to consideration items
                 *      on a group of orders via a supplied fulfillment.
                 *
                 * @param advancedOrders          The orders to match.
                 * @param offerComponents         An array designating offer components to
                 *                                match to consideration components.
                 * @param considerationComponents An array designating consideration
                 *                                components to match to offer components.
                 *                                Note that each consideration amount must
                 *                                be zero in order for the match operation
                 *                                to be valid.
                 * @param fulfillmentIndex        The index of the fulfillment being
                 *                                applied.
                 *
                 * @return execution The transfer performed as a result of the fulfillment.
                 */
                function _applyFulfillment(
                    AdvancedOrder[] memory advancedOrders,
                    FulfillmentComponent[] memory offerComponents,
                    FulfillmentComponent[] memory considerationComponents,
                    uint256 fulfillmentIndex
                ) internal pure returns (Execution memory execution) {
                    // Ensure 1+ of both offer and consideration components are supplied.
                    if (
                        offerComponents.length == 0 || considerationComponents.length == 0
                    ) {
                        _revertOfferAndConsiderationRequiredOnFulfillment();
                    }
                    // Declare a new Execution struct.
                    Execution memory considerationExecution;
                    // Validate & aggregate consideration items to new Execution object.
                    _aggregateValidFulfillmentConsiderationItems(
                        advancedOrders,
                        considerationComponents,
                        considerationExecution
                    );
                    // Retrieve the consideration item from the execution struct.
                    ReceivedItem memory considerationItem = considerationExecution.item;
                    // Skip aggregating offer items if no consideration items are available.
                    if (considerationItem.amount == 0) {
                        // Set the offerer and recipient to null address and the item type
                        // to a non-native item type if the execution amount is zero. This
                        // will cause the execution item to be skipped.
                        considerationExecution.offerer = address(0);
                        considerationExecution.item.recipient = payable(0);
                        considerationExecution.item.itemType = ItemType.ERC20;
                        return considerationExecution;
                    }
                    // Recipient does not need to be specified because it will always be set
                    // to that of the consideration.
                    // Validate & aggregate offer items to Execution object.
                    _aggregateValidFulfillmentOfferItems(
                        advancedOrders,
                        offerComponents,
                        execution
                    );
                    // Ensure offer & consideration item types, tokens, & identifiers match.
                    // (a != b || c != d || e != f) == (((a ^ b) | (c ^ d) | (e ^ f)) != 0),
                    // but the second expression requires less gas to evaluate.
                    if (
                        ((uint8(execution.item.itemType) ^
                            uint8(considerationItem.itemType)) |
                            (uint160(execution.item.token) ^
                                uint160(considerationItem.token)) |
                            (execution.item.identifier ^ considerationItem.identifier)) != 0
                    ) {
                        _revertMismatchedFulfillmentOfferAndConsiderationComponents(
                            fulfillmentIndex
                        );
                    }
                    // If total consideration amount exceeds the offer amount...
                    if (considerationItem.amount > execution.item.amount) {
                        // Retrieve the first consideration component from the fulfillment.
                        FulfillmentComponent memory targetComponent = (
                            considerationComponents[0]
                        );
                        // Skip underflow check as the conditional being true implies that
                        // considerationItem.amount > execution.item.amount.
                        unchecked {
                            // Add excess consideration item amount to original order array.
                            advancedOrders[targetComponent.orderIndex]
                                .parameters
                                .consideration[targetComponent.itemIndex]
                                .startAmount = (considerationItem.amount -
                                execution.item.amount);
                        }
                    } else {
                        // Retrieve the first offer component from the fulfillment.
                        FulfillmentComponent memory targetComponent = offerComponents[0];
                        // Skip underflow check as the conditional being false implies that
                        // execution.item.amount >= considerationItem.amount.
                        unchecked {
                            // Add excess offer item amount to the original array of orders.
                            advancedOrders[targetComponent.orderIndex]
                                .parameters
                                .offer[targetComponent.itemIndex]
                                .startAmount = (execution.item.amount -
                                considerationItem.amount);
                        }
                        // Reduce total offer amount to equal the consideration amount.
                        execution.item.amount = considerationItem.amount;
                    }
                    // Reuse consideration recipient.
                    execution.item.recipient = considerationItem.recipient;
                    // Return the final execution that will be triggered for relevant items.
                    return execution; // Execution(considerationItem, offerer, conduitKey);
                }
                /**
                 * @dev Internal view function to aggregate offer or consideration items
                 *      from a group of orders into a single execution via a supplied array
                 *      of fulfillment components. Items that are not available to aggregate
                 *      will not be included in the aggregated execution.
                 *
                 * @param advancedOrders        The orders to aggregate.
                 * @param side                  The side (i.e. offer or consideration).
                 * @param fulfillmentComponents An array designating item components to
                 *                              aggregate if part of an available order.
                 * @param fulfillerConduitKey   A bytes32 value indicating what conduit, if
                 *                              any, to source the fulfiller's token
                 *                              approvals from. The zero hash signifies that
                 *                              no conduit should be used, with approvals
                 *                              set directly on this contract.
                 * @param recipient             The intended recipient for all received
                 *                              items.
                 *
                 * @return execution The transfer performed as a result of the fulfillment.
                 */
                function _aggregateAvailable(
                    AdvancedOrder[] memory advancedOrders,
                    Side side,
                    FulfillmentComponent[] memory fulfillmentComponents,
                    bytes32 fulfillerConduitKey,
                    address recipient
                ) internal view returns (Execution memory execution) {
                    // Skip overflow / underflow checks; conditions checked or unreachable.
                    unchecked {
                        // Retrieve fulfillment components array length and place on stack.
                        // Ensure at least one fulfillment component has been supplied.
                        if (fulfillmentComponents.length == 0) {
                            _revertMissingFulfillmentComponentOnAggregation(side);
                        }
                        // Retrieve the received item on the execution being returned.
                        ReceivedItem memory item = execution.item;
                        // If the fulfillment components are offer components...
                        if (side == Side.OFFER) {
                            // Set the supplied recipient on the execution item.
                            item.recipient = payable(recipient);
                            // Return execution for aggregated items provided by offerer.
                            _aggregateValidFulfillmentOfferItems(
                                advancedOrders,
                                fulfillmentComponents,
                                execution
                            );
                        } else {
                            // Otherwise, fulfillment components are consideration
                            // components. Return execution for aggregated items provided by
                            // the fulfiller.
                            _aggregateValidFulfillmentConsiderationItems(
                                advancedOrders,
                                fulfillmentComponents,
                                execution
                            );
                            // Set the caller as the offerer on the execution.
                            execution.offerer = msg.sender;
                            // Set fulfiller conduit key as the conduit key on execution.
                            execution.conduitKey = fulfillerConduitKey;
                        }
                        // Set the offerer and recipient to null address and the item type
                        // to a non-native item type if the execution amount is zero. This
                        // will cause the execution item to be skipped.
                        if (item.amount == 0) {
                            execution.offerer = address(0);
                            item.recipient = payable(0);
                            item.itemType = ItemType.ERC20;
                        }
                    }
                }
                /**
                 * @dev Internal pure function to aggregate a group of offer items using
                 *      supplied directives on which component items are candidates for
                 *      aggregation, skipping items on orders that are not available.
                 *
                 * @param advancedOrders  The orders to aggregate offer items from.
                 * @param offerComponents An array of FulfillmentComponent structs
                 *                        indicating the order index and item index of each
                 *                        candidate offer item for aggregation.
                 * @param execution       The execution to apply the aggregation to.
                 */
                function _aggregateValidFulfillmentOfferItems(
                    AdvancedOrder[] memory advancedOrders,
                    FulfillmentComponent[] memory offerComponents,
                    Execution memory execution
                ) internal pure {
                    assembly {
                        // Declare a variable for the final aggregated item amount.
                        let amount
                        // Declare a variable to track errors encountered with amount.
                        let errorBuffer
                        // Declare a variable for the hash of itemType, token, & identifier.
                        let dataHash
                        // Iterate over each offer component.
                        for {
                            // Create variable to track position in offerComponents head.
                            let fulfillmentHeadPtr := offerComponents
                            // Get position one word past last element in head of array.
                            let endPtr := add(
                                offerComponents,
                                shl(OneWordShift, mload(offerComponents))
                            )
                        } lt(fulfillmentHeadPtr, endPtr) {
                        } {
                            // Increment position in considerationComponents head.
                            fulfillmentHeadPtr := add(fulfillmentHeadPtr, OneWord)
                            // Retrieve the order index using the fulfillment pointer.
                            let orderIndex := mload(mload(fulfillmentHeadPtr))
                            // Ensure that the order index is not out of range.
                            if iszero(lt(orderIndex, mload(advancedOrders))) {
                                throwInvalidFulfillmentComponentData()
                            }
                            // Read advancedOrders[orderIndex] pointer from its array head.
                            let orderPtr := mload(
                                // Calculate head position of advancedOrders[orderIndex].
                                add(
                                    add(advancedOrders, OneWord),
                                    shl(OneWordShift, orderIndex)
                                )
                            )
                            // Read the pointer to OrderParameters from the AdvancedOrder.
                            let paramsPtr := mload(orderPtr)
                            // Retrieve item index using an offset of fulfillment pointer.
                            let itemIndex := mload(
                                add(mload(fulfillmentHeadPtr), Fulfillment_itemIndex_offset)
                            )
                            let offerItemPtr
                            {
                                // Load the offer array pointer.
                                let offerArrPtr := mload(
                                    add(paramsPtr, OrderParameters_offer_head_offset)
                                )
                                // If the offer item index is out of range or the numerator
                                // is zero, skip this item.
                                if or(
                                    iszero(lt(itemIndex, mload(offerArrPtr))),
                                    iszero(
                                        mload(add(orderPtr, AdvancedOrder_numerator_offset))
                                    )
                                ) {
                                    continue
                                }
                                // Retrieve offer item pointer using the item index.
                                offerItemPtr := mload(
                                    add(
                                        // Get pointer to beginning of receivedItem.
                                        add(offerArrPtr, OneWord),
                                        // Calculate offset to pointer for desired order.
                                        shl(OneWordShift, itemIndex)
                                    )
                                )
                            }
                            // Declare a separate scope for the amount update.
                            {
                                // Retrieve amount pointer using consideration item pointer.
                                let amountPtr := add(offerItemPtr, Common_amount_offset)
                                // Add offer item amount to execution amount.
                                let newAmount := add(amount, mload(amountPtr))
                                // Update error buffer:
                                // 1 = zero amount, 2 = overflow, 3 = both.
                                errorBuffer := or(
                                    errorBuffer,
                                    or(
                                        shl(1, lt(newAmount, amount)),
                                        iszero(mload(amountPtr))
                                    )
                                )
                                // Update the amount to the new, summed amount.
                                amount := newAmount
                                // Zero out amount on original item to indicate it is spent.
                                mstore(amountPtr, 0)
                            }
                            // Retrieve ReceivedItem pointer from Execution.
                            let receivedItem := mload(execution)
                            // Check if this is the first valid fulfillment item.
                            switch iszero(dataHash)
                            case 1 {
                                // On first valid item, populate the received item in memory
                                // for later comparison.
                                // Set the item type on the received item.
                                mstore(receivedItem, mload(offerItemPtr))
                                // Set the token on the received item.
                                mstore(
                                    add(receivedItem, Common_token_offset),
                                    mload(add(offerItemPtr, Common_token_offset))
                                )
                                // Set the identifier on the received item.
                                mstore(
                                    add(receivedItem, Common_identifier_offset),
                                    mload(add(offerItemPtr, Common_identifier_offset))
                                )
                                // Set offerer on returned execution using order pointer.
                                mstore(
                                    add(execution, Execution_offerer_offset),
                                    mload(paramsPtr)
                                )
                                // Set execution conduitKey via order pointer offset.
                                mstore(
                                    add(execution, Execution_conduit_offset),
                                    mload(add(paramsPtr, OrderParameters_conduit_offset))
                                )
                                // Calculate the hash of (itemType, token, identifier).
                                dataHash := keccak256(
                                    receivedItem,
                                    ReceivedItem_CommonParams_size
                                )
                                // If component index > 0, swap component pointer with
                                // pointer to first component so that any remainder after
                                // fulfillment can be added back to the first item.
                                let firstFulfillmentHeadPtr := add(offerComponents, OneWord)
                                if xor(firstFulfillmentHeadPtr, fulfillmentHeadPtr) {
                                    let firstFulfillmentPtr := mload(
                                        firstFulfillmentHeadPtr
                                    )
                                    let fulfillmentPtr := mload(fulfillmentHeadPtr)
                                    mstore(firstFulfillmentHeadPtr, fulfillmentPtr)
                                }
                            }
                            default {
                                // Compare every subsequent item to the first.
                                if or(
                                    or(
                                        // The offerer must match on both items.
                                        xor(
                                            mload(paramsPtr),
                                            mload(add(execution, Execution_offerer_offset))
                                        ),
                                        // The conduit key must match on both items.
                                        xor(
                                            mload(
                                                add(
                                                    paramsPtr,
                                                    OrderParameters_conduit_offset
                                                )
                                            ),
                                            mload(add(execution, Execution_conduit_offset))
                                        )
                                    ),
                                    // The itemType, token, and identifier must match.
                                    xor(
                                        dataHash,
                                        keccak256(
                                            offerItemPtr,
                                            ReceivedItem_CommonParams_size
                                        )
                                    )
                                ) {
                                    // Throw if any of the requirements are not met.
                                    throwInvalidFulfillmentComponentData()
                                }
                            }
                        }
                        // Write final amount to execution.
                        mstore(add(mload(execution), Common_amount_offset), amount)
                        // Determine whether the error buffer contains a nonzero error code.
                        if errorBuffer {
                            // If errorBuffer is 1, an item had an amount of zero.
                            if eq(errorBuffer, 1) {
                                // Store left-padded selector with push4 (reduces bytecode)
                                // mem[28:32] = selector
                                mstore(0, MissingItemAmount_error_selector)
                                // revert(abi.encodeWithSignature("MissingItemAmount()"))
                                revert(
                                    Error_selector_offset,
                                    MissingItemAmount_error_length
                                )
                            }
                            // If errorBuffer is not 1 or 0, the sum overflowed.
                            // Panic!
                            throwOverflow()
                        }
                        // Declare function for reverts on invalid fulfillment data.
                        function throwInvalidFulfillmentComponentData() {
                            // Store left-padded selector (uses push4 and reduces code size)
                            mstore(0, InvalidFulfillmentComponentData_error_selector)
                            // revert(abi.encodeWithSignature(
                            //     "InvalidFulfillmentComponentData()"
                            // ))
                            revert(
                                Error_selector_offset,
                                InvalidFulfillmentComponentData_error_length
                            )
                        }
                        // Declare function for reverts due to arithmetic overflows.
                        function throwOverflow() {
                            // Store the Panic error signature.
                            mstore(0, Panic_error_selector)
                            // Store the arithmetic (0x11) panic code.
                            mstore(Panic_error_code_ptr, Panic_arithmetic)
                            // revert(abi.encodeWithSignature("Panic(uint256)", 0x11))
                            revert(Error_selector_offset, Panic_error_length)
                        }
                    }
                }
                /**
                 * @dev Internal pure function to aggregate a group of consideration items
                 *      using supplied directives on which component items are candidates
                 *      for aggregation, skipping items on orders that are not available.
                 *      Note that this function depends on memory layout affected by an
                 *      earlier call to _validateOrdersAndPrepareToFulfill.  The memory for
                 *      the consideration arrays needs to be updated before calling
                 *      _aggregateValidFulfillmentConsiderationItems.
                 *      _validateOrdersAndPrepareToFulfill is called in _matchAdvancedOrders
                 *      and _fulfillAvailableAdvancedOrders in the current version.
                 *
                 * @param advancedOrders          The orders to aggregate consideration
                 *                                items from.
                 * @param considerationComponents An array of FulfillmentComponent structs
                 *                                indicating the order index and item index
                 *                                of each candidate consideration item for
                 *                                aggregation.
                 * @param execution               The execution to apply the aggregation to.
                 */
                function _aggregateValidFulfillmentConsiderationItems(
                    AdvancedOrder[] memory advancedOrders,
                    FulfillmentComponent[] memory considerationComponents,
                    Execution memory execution
                ) internal pure {
                    // Utilize assembly in order to efficiently aggregate the items.
                    assembly {
                        // Declare a variable for the final aggregated item amount.
                        let amount
                        // Create variable to track errors encountered with amount.
                        let errorBuffer
                        // Declare variable for hash(itemType, token, identifier, recipient)
                        let dataHash
                        // Iterate over each consideration component.
                        for {
                            // Track position in considerationComponents head.
                            let fulfillmentHeadPtr := considerationComponents
                            // Get position one word past last element in head of array.
                            let endPtr := add(
                                considerationComponents,
                                shl(OneWordShift, mload(considerationComponents))
                            )
                        } lt(fulfillmentHeadPtr, endPtr) {
                        } {
                            // Increment position in considerationComponents head.
                            fulfillmentHeadPtr := add(fulfillmentHeadPtr, OneWord)
                            // Retrieve the order index using the fulfillment pointer.
                            let orderIndex := mload(mload(fulfillmentHeadPtr))
                            // Ensure that the order index is not out of range.
                            if iszero(lt(orderIndex, mload(advancedOrders))) {
                                throwInvalidFulfillmentComponentData()
                            }
                            // Read advancedOrders[orderIndex] pointer from its array head.
                            let orderPtr := mload(
                                // Calculate head position of advancedOrders[orderIndex].
                                add(
                                    add(advancedOrders, OneWord),
                                    shl(OneWordShift, orderIndex)
                                )
                            )
                            // Retrieve item index using an offset of fulfillment pointer.
                            let itemIndex := mload(
                                add(mload(fulfillmentHeadPtr), Fulfillment_itemIndex_offset)
                            )
                            let considerationItemPtr
                            {
                                // Load consideration array pointer.
                                let considerationArrPtr := mload(
                                    add(
                                        // Read OrderParameters pointer from AdvancedOrder.
                                        mload(orderPtr),
                                        OrderParameters_consideration_head_offset
                                    )
                                )
                                // If the consideration item index is out of range or the
                                // numerator is zero, skip this item.
                                if or(
                                    iszero(lt(itemIndex, mload(considerationArrPtr))),
                                    iszero(
                                        mload(add(orderPtr, AdvancedOrder_numerator_offset))
                                    )
                                ) {
                                    continue
                                }
                                // Retrieve consideration item pointer using the item index.
                                considerationItemPtr := mload(
                                    add(
                                        // Get pointer to beginning of receivedItem.
                                        add(considerationArrPtr, OneWord),
                                        // Calculate offset to pointer for desired order.
                                        shl(OneWordShift, itemIndex)
                                    )
                                )
                            }
                            // Declare a separate scope for the amount update.
                            {
                                // Retrieve amount pointer using consideration item pointer.
                                let amountPtr := add(
                                    considerationItemPtr,
                                    Common_amount_offset
                                )
                                // Add consideration item amount to execution amount.
                                let newAmount := add(amount, mload(amountPtr))
                                // Update error buffer:
                                // 1 = zero amount, 2 = overflow, 3 = both.
                                errorBuffer := or(
                                    errorBuffer,
                                    or(
                                        shl(1, lt(newAmount, amount)),
                                        iszero(mload(amountPtr))
                                    )
                                )
                                // Update the amount to the new, summed amount.
                                amount := newAmount
                                // Zero out original item amount to indicate it is credited.
                                mstore(amountPtr, 0)
                            }
                            // Retrieve ReceivedItem pointer from Execution.
                            let receivedItem := mload(execution)
                            switch iszero(dataHash)
                            case 1 {
                                // On first valid item, populate the received item in
                                // memory for later comparison.
                                // Set the item type on the received item.
                                mstore(receivedItem, mload(considerationItemPtr))
                                // Set the token on the received item.
                                mstore(
                                    add(receivedItem, Common_token_offset),
                                    mload(add(considerationItemPtr, Common_token_offset))
                                )
                                // Set the identifier on the received item.
                                mstore(
                                    add(receivedItem, Common_identifier_offset),
                                    mload(
                                        add(considerationItemPtr, Common_identifier_offset)
                                    )
                                )
                                // Set the recipient on the received item. Note that this
                                // depends on the memory layout established by the
                                // _validateOrdersAndPrepareToFulfill function.
                                mstore(
                                    add(receivedItem, ReceivedItem_recipient_offset),
                                    mload(
                                        add(
                                            considerationItemPtr,
                                            ReceivedItem_recipient_offset
                                        )
                                    )
                                )
                                // Calculate the hash of (itemType, token, identifier,
                                // recipient). This is run after amount is set to zero, so
                                // there will be one blank word after identifier included in
                                // the hash buffer.
                                dataHash := keccak256(
                                    considerationItemPtr,
                                    ReceivedItem_size
                                )
                                // If component index > 0, swap component pointer with
                                // pointer to first component so that any remainder after
                                // fulfillment can be added back to the first item.
                                let firstFulfillmentHeadPtr := add(
                                    considerationComponents,
                                    OneWord
                                )
                                if xor(firstFulfillmentHeadPtr, fulfillmentHeadPtr) {
                                    let firstFulfillmentPtr := mload(
                                        firstFulfillmentHeadPtr
                                    )
                                    let fulfillmentPtr := mload(fulfillmentHeadPtr)
                                    mstore(firstFulfillmentHeadPtr, fulfillmentPtr)
                                }
                            }
                            default {
                                // Compare every subsequent item to the first; the item
                                // type, token, identifier and recipient must match.
                                if xor(
                                    dataHash,
                                    // Calculate the hash of (itemType, token, identifier,
                                    // recipient). This is run after amount is set to zero,
                                    // so there will be one blank word after identifier
                                    // included in the hash buffer.
                                    keccak256(considerationItemPtr, ReceivedItem_size)
                                ) {
                                    // Throw if any of the requirements are not met.
                                    throwInvalidFulfillmentComponentData()
                                }
                            }
                        }
                        // Retrieve ReceivedItem pointer from Execution.
                        let receivedItem := mload(execution)
                        // Write final amount to execution.
                        mstore(add(receivedItem, Common_amount_offset), amount)
                        // Determine whether the error buffer contains a nonzero error code.
                        if errorBuffer {
                            // If errorBuffer is 1, an item had an amount of zero.
                            if eq(errorBuffer, 1) {
                                // Store left-padded selector with push4, mem[28:32]
                                mstore(0, MissingItemAmount_error_selector)
                                // revert(abi.encodeWithSignature("MissingItemAmount()"))
                                revert(
                                    Error_selector_offset,
                                    MissingItemAmount_error_length
                                )
                            }
                            // If errorBuffer is not 1 or 0, `amount` overflowed.
                            // Panic!
                            throwOverflow()
                        }
                        // Declare function for reverts on invalid fulfillment data.
                        function throwInvalidFulfillmentComponentData() {
                            // Store the InvalidFulfillmentComponentData error signature.
                            mstore(0, InvalidFulfillmentComponentData_error_selector)
                            // revert(abi.encodeWithSignature(
                            //     "InvalidFulfillmentComponentData()"
                            // ))
                            revert(
                                Error_selector_offset,
                                InvalidFulfillmentComponentData_error_length
                            )
                        }
                        // Declare function for reverts due to arithmetic overflows.
                        function throwOverflow() {
                            // Store the Panic error signature.
                            mstore(0, Panic_error_selector)
                            // Store the arithmetic (0x11) panic code.
                            mstore(Panic_error_code_ptr, Panic_arithmetic)
                            // revert(abi.encodeWithSignature("Panic(uint256)", 0x11))
                            revert(Error_selector_offset, Panic_error_length)
                        }
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.17;
            import { ItemType, OrderType } from "./ConsiderationEnums.sol";
            import {
                AdvancedOrder,
                ConsiderationItem,
                CriteriaResolver,
                OfferItem,
                OrderParameters,
                ReceivedItem,
                SpentItem
            } from "./ConsiderationStructs.sol";
            import { BasicOrderFulfiller } from "./BasicOrderFulfiller.sol";
            import { CriteriaResolution } from "./CriteriaResolution.sol";
            import { AmountDeriver } from "./AmountDeriver.sol";
            import {
                _revertInsufficientNativeTokensSupplied,
                _revertInvalidNativeOfferItem
            } from "./ConsiderationErrors.sol";
            import {
                AccumulatorDisarmed,
                ConsiderationItem_recipient_offset,
                ReceivedItem_amount_offset,
                ReceivedItem_recipient_offset
            } from "./ConsiderationConstants.sol";
            /**
             * @title OrderFulfiller
             * @author 0age
             * @notice OrderFulfiller contains logic related to order fulfillment where a
             *         single order is being fulfilled and where basic order fulfillment is
             *         not available as an option.
             */
            contract OrderFulfiller is
                BasicOrderFulfiller,
                CriteriaResolution,
                AmountDeriver
            {
                /**
                 * @dev Derive and set hashes, reference chainId, and associated domain
                 *      separator during deployment.
                 *
                 * @param conduitController A contract that deploys conduits, or proxies
                 *                          that may optionally be used to transfer approved
                 *                          ERC20/721/1155 tokens.
                 */
                constructor(
                    address conduitController
                ) BasicOrderFulfiller(conduitController) {}
                /**
                 * @dev Internal function to validate an order and update its status, adjust
                 *      prices based on current time, apply criteria resolvers, determine
                 *      what portion to fill, and transfer relevant tokens.
                 *
                 * @param advancedOrder       The order to fulfill as well as the fraction
                 *                            to fill. Note that all offer and consideration
                 *                            components must divide with no remainder for
                 *                            the partial fill to be valid.
                 * @param criteriaResolvers   An array where each element contains a
                 *                            reference to a specific offer or
                 *                            consideration, a token identifier, and a proof
                 *                            that the supplied token identifier is
                 *                            contained in the order's merkle root. Note
                 *                            that a criteria of zero indicates that any
                 *                            (transferable) token identifier is valid and
                 *                            that no proof needs to be supplied.
                 * @param fulfillerConduitKey A bytes32 value indicating what conduit, if
                 *                            any, to source the fulfiller's token approvals
                 *                            from. The zero hash signifies that no conduit
                 *                            should be used, with direct approvals set on
                 *                            Consideration.
                 * @param recipient           The intended recipient for all received items.
                 *
                 * @return A boolean indicating whether the order has been fulfilled.
                 */
                function _validateAndFulfillAdvancedOrder(
                    AdvancedOrder memory advancedOrder,
                    CriteriaResolver[] memory criteriaResolvers,
                    bytes32 fulfillerConduitKey,
                    address recipient
                ) internal returns (bool) {
                    // Ensure this function cannot be triggered during a reentrant call.
                    _setReentrancyGuard(
                        // Native tokens accepted during execution for contract order types.
                        advancedOrder.parameters.orderType == OrderType.CONTRACT
                    );
                    // Validate order, update status, and determine fraction to fill.
                    (
                        bytes32 orderHash,
                        uint256 fillNumerator,
                        uint256 fillDenominator
                    ) = _validateOrderAndUpdateStatus(advancedOrder, true);
                    // Create an array with length 1 containing the order.
                    AdvancedOrder[] memory advancedOrders = new AdvancedOrder[](1);
                    // Populate the order as the first and only element of the new array.
                    advancedOrders[0] = advancedOrder;
                    // Apply criteria resolvers using generated orders and details arrays.
                    _applyCriteriaResolvers(advancedOrders, criteriaResolvers);
                    // Retrieve the order parameters after applying criteria resolvers.
                    OrderParameters memory orderParameters = advancedOrders[0].parameters;
                    // Perform each item transfer with the appropriate fractional amount.
                    _applyFractionsAndTransferEach(
                        orderParameters,
                        fillNumerator,
                        fillDenominator,
                        fulfillerConduitKey,
                        recipient
                    );
                    // Declare empty bytes32 array and populate with the order hash.
                    bytes32[] memory orderHashes = new bytes32[](1);
                    orderHashes[0] = orderHash;
                    // Ensure restricted orders have a valid submitter or pass a zone check.
                    _assertRestrictedAdvancedOrderValidity(
                        advancedOrders[0],
                        orderHashes,
                        orderHash
                    );
                    // Emit an event signifying that the order has been fulfilled.
                    _emitOrderFulfilledEvent(
                        orderHash,
                        orderParameters.offerer,
                        orderParameters.zone,
                        recipient,
                        orderParameters.offer,
                        orderParameters.consideration
                    );
                    // Clear the reentrancy guard.
                    _clearReentrancyGuard();
                    return true;
                }
                /**
                 * @dev Internal function to transfer each item contained in a given single
                 *      order fulfillment after applying a respective fraction to the amount
                 *      being transferred.
                 *
                 * @param orderParameters     The parameters for the fulfilled order.
                 * @param numerator           A value indicating the portion of the order
                 *                            that should be filled.
                 * @param denominator         A value indicating the total order size.
                 * @param fulfillerConduitKey A bytes32 value indicating what conduit, if
                 *                            any, to source the fulfiller's token approvals
                 *                            from. The zero hash signifies that no conduit
                 *                            should be used, with direct approvals set on
                 *                            Consideration.
                 * @param recipient           The intended recipient for all received items.
                 */
                function _applyFractionsAndTransferEach(
                    OrderParameters memory orderParameters,
                    uint256 numerator,
                    uint256 denominator,
                    bytes32 fulfillerConduitKey,
                    address recipient
                ) internal {
                    // Read start time & end time from order parameters and place on stack.
                    uint256 startTime = orderParameters.startTime;
                    uint256 endTime = orderParameters.endTime;
                    // Initialize an accumulator array. From this point forward, no new
                    // memory regions can be safely allocated until the accumulator is no
                    // longer being utilized, as the accumulator operates in an open-ended
                    // fashion from this memory pointer; existing memory may still be
                    // accessed and modified, however.
                    bytes memory accumulator = new bytes(AccumulatorDisarmed);
                    // As of solidity 0.6.0, inline assembly cannot directly access function
                    // definitions, but can still access locally scoped function variables.
                    // This means that a local variable to reference the internal function
                    // definition (using the same type), along with a local variable with
                    // the desired type, must first be created. Then, the original function
                    // pointer can be recast to the desired type.
                    /**
                     * Repurpose existing OfferItem memory regions on the offer array for
                     * the order by overriding the _transfer function pointer to accept a
                     * modified OfferItem argument in place of the usual ReceivedItem:
                     *
                     *   ========= OfferItem ==========   ====== ReceivedItem ======
                     *   ItemType itemType; ------------> ItemType itemType;
                     *   address token; ----------------> address token;
                     *   uint256 identifierOrCriteria; -> uint256 identifier;
                     *   uint256 startAmount; ----------> uint256 amount;
                     *   uint256 endAmount; ------------> address recipient;
                     */
                    // Declare a nested scope to minimize stack depth.
                    unchecked {
                        // Read offer array length from memory and place on stack.
                        uint256 totalOfferItems = orderParameters.offer.length;
                        // Create a variable to indicate whether the order has any
                        // native offer items
                        uint256 anyNativeItems;
                        // Iterate over each offer on the order.
                        // Skip overflow check as for loop is indexed starting at zero.
                        for (uint256 i = 0; i < totalOfferItems; ++i) {
                            // Retrieve the offer item.
                            OfferItem memory offerItem = orderParameters.offer[i];
                            // Offer items for the native token can not be received outside
                            // of a match order function except as part of a contract order.
                            {
                                ItemType itemType = offerItem.itemType;
                                assembly {
                                    anyNativeItems := or(anyNativeItems, iszero(itemType))
                                }
                            }
                            // Declare an additional nested scope to minimize stack depth.
                            {
                                // Apply fill fraction to get offer item amount to transfer.
                                uint256 amount = _applyFraction(
                                    offerItem.startAmount,
                                    offerItem.endAmount,
                                    numerator,
                                    denominator,
                                    startTime,
                                    endTime,
                                    false
                                );
                                // Utilize assembly to set overloaded offerItem arguments.
                                assembly {
                                    // Write new fractional amount to startAmount as amount.
                                    mstore(
                                        add(offerItem, ReceivedItem_amount_offset),
                                        amount
                                    )
                                    // Write recipient to endAmount.
                                    mstore(
                                        add(offerItem, ReceivedItem_recipient_offset),
                                        recipient
                                    )
                                }
                            }
                            // Transfer the item from the offerer to the recipient.
                            _toOfferItemInput(_transfer)(
                                offerItem,
                                orderParameters.offerer,
                                orderParameters.conduitKey,
                                accumulator
                            );
                        }
                        // If a non-contract order has native offer items, throw with an
                        // `InvalidNativeOfferItem` custom error.
                        {
                            OrderType orderType = orderParameters.orderType;
                            uint256 invalidNativeOfferItem;
                            assembly {
                                invalidNativeOfferItem := and(
                                    // Note that this check requires that there are no order
                                    // types beyond the current set (0-4).  It will need to
                                    // be modified if more order types are added.
                                    lt(orderType, 4),
                                    anyNativeItems
                                )
                            }
                            if (invalidNativeOfferItem != 0) {
                                _revertInvalidNativeOfferItem();
                            }
                        }
                    }
                    // Declare a variable for the available native token balance.
                    uint256 nativeTokenBalance;
                    /**
                     * Repurpose existing ConsiderationItem memory regions on the
                     * consideration array for the order by overriding the _transfer
                     * function pointer to accept a modified ConsiderationItem argument in
                     * place of the usual ReceivedItem:
                     *
                     *   ====== ConsiderationItem =====   ====== ReceivedItem ======
                     *   ItemType itemType; ------------> ItemType itemType;
                     *   address token; ----------------> address token;
                     *   uint256 identifierOrCriteria;--> uint256 identifier;
                     *   uint256 startAmount; ----------> uint256 amount;
                     *   uint256 endAmount;        /----> address recipient;
                     *   address recipient; ------/
                     */
                    // Declare a nested scope to minimize stack depth.
                    unchecked {
                        // Read consideration array length from memory and place on stack.
                        uint256 totalConsiderationItems = orderParameters
                            .consideration
                            .length;
                        // Iterate over each consideration item on the order.
                        // Skip overflow check as for loop is indexed starting at zero.
                        for (uint256 i = 0; i < totalConsiderationItems; ++i) {
                            // Retrieve the consideration item.
                            ConsiderationItem memory considerationItem = (
                                orderParameters.consideration[i]
                            );
                            // Apply fraction & derive considerationItem amount to transfer.
                            uint256 amount = _applyFraction(
                                considerationItem.startAmount,
                                considerationItem.endAmount,
                                numerator,
                                denominator,
                                startTime,
                                endTime,
                                true
                            );
                            // Use assembly to set overloaded considerationItem arguments.
                            assembly {
                                // Write derived fractional amount to startAmount as amount.
                                mstore(
                                    add(considerationItem, ReceivedItem_amount_offset),
                                    amount
                                )
                                // Write original recipient to endAmount as recipient.
                                mstore(
                                    add(considerationItem, ReceivedItem_recipient_offset),
                                    mload(
                                        add(
                                            considerationItem,
                                            ConsiderationItem_recipient_offset
                                        )
                                    )
                                )
                            }
                            if (considerationItem.itemType == ItemType.NATIVE) {
                                // Get the current available balance of native tokens.
                                assembly {
                                    nativeTokenBalance := selfbalance()
                                }
                                // Ensure that sufficient native tokens are still available.
                                if (amount > nativeTokenBalance) {
                                    _revertInsufficientNativeTokensSupplied();
                                }
                            }
                            // Transfer item from caller to recipient specified by the item.
                            _toConsiderationItemInput(_transfer)(
                                considerationItem,
                                msg.sender,
                                fulfillerConduitKey,
                                accumulator
                            );
                        }
                    }
                    // Trigger any remaining accumulated transfers via call to the conduit.
                    _triggerIfArmed(accumulator);
                    // Determine whether any native token balance remains.
                    assembly {
                        nativeTokenBalance := selfbalance()
                    }
                    // Return any remaining native token balance to the caller.
                    if (nativeTokenBalance != 0) {
                        _transferNativeTokens(payable(msg.sender), nativeTokenBalance);
                    }
                }
                /**
                 * @dev Internal function to emit an OrderFulfilled event. OfferItems are
                 *      translated into SpentItems and ConsiderationItems are translated
                 *      into ReceivedItems.
                 *
                 * @param orderHash     The order hash.
                 * @param offerer       The offerer for the order.
                 * @param zone          The zone for the order.
                 * @param recipient     The recipient of the order, or the null address if
                 *                      the order was fulfilled via order matching.
                 * @param offer         The offer items for the order.
                 * @param consideration The consideration items for the order.
                 */
                function _emitOrderFulfilledEvent(
                    bytes32 orderHash,
                    address offerer,
                    address zone,
                    address recipient,
                    OfferItem[] memory offer,
                    ConsiderationItem[] memory consideration
                ) internal {
                    // Cast already-modified offer memory region as spent items.
                    SpentItem[] memory spentItems;
                    assembly {
                        spentItems := offer
                    }
                    // Cast already-modified consideration memory region as received items.
                    ReceivedItem[] memory receivedItems;
                    assembly {
                        receivedItems := consideration
                    }
                    // Emit an event signifying that the order has been fulfilled.
                    emit OrderFulfilled(
                        orderHash,
                        offerer,
                        zone,
                        recipient,
                        spentItems,
                        receivedItems
                    );
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.13;
            uint256 constant Error_selector_offset = 0x1c;
            /*
             *  error MissingFulfillmentComponentOnAggregation(uint8 side)
             *    - Defined in FulfillmentApplicationErrors.sol
             *  Memory layout:
             *    - 0x00: Left-padded selector (data begins at 0x1c)
             *    - 0x20: side
             * Revert buffer is memory[0x1c:0x40]
             */
            uint256 constant MissingFulfillmentComponentOnAggregation_error_selector = (
                0x375c24c1
            );
            uint256 constant MissingFulfillmentComponentOnAggregation_error_side_ptr = 0x20;
            uint256 constant MissingFulfillmentComponentOnAggregation_error_length = 0x24;
            /*
             *  error OfferAndConsiderationRequiredOnFulfillment()
             *    - Defined in FulfillmentApplicationErrors.sol
             *  Memory layout:
             *    - 0x00: Left-padded selector (data begins at 0x1c)
             * Revert buffer is memory[0x1c:0x20]
             */
            uint256 constant OfferAndConsiderationRequiredOnFulfillment_error_selector = (
                0x98e9db6e
            );
            uint256 constant OfferAndConsiderationRequiredOnFulfillment_error_length = 0x04;
            /*
             *  error MismatchedFulfillmentOfferAndConsiderationComponents(
             *      uint256 fulfillmentIndex
             *  )
             *    - Defined in FulfillmentApplicationErrors.sol
             *  Memory layout:
             *    - 0x00: Left-padded selector (data begins at 0x1c)
             *    - 0x20: fulfillmentIndex
             * Revert buffer is memory[0x1c:0x40]
             */
            uint256 constant MismatchedOfferAndConsiderationComponents_error_selector = (
                0xbced929d
            );
            uint256 constant MismatchedOfferAndConsiderationComponents_error_idx_ptr = 0x20;
            uint256 constant MismatchedOfferAndConsiderationComponents_error_length = 0x24;
            /*
             *  error InvalidFulfillmentComponentData()
             *    - Defined in FulfillmentApplicationErrors.sol
             *  Memory layout:
             *    - 0x00: Left-padded selector (data begins at 0x1c)
             * Revert buffer is memory[0x1c:0x20]
             */
            uint256 constant InvalidFulfillmentComponentData_error_selector = 0x7fda7279;
            uint256 constant InvalidFulfillmentComponentData_error_length = 0x04;
            /*
             *  error InexactFraction()
             *    - Defined in AmountDerivationErrors.sol
             *  Memory layout:
             *    - 0x00: Left-padded selector (data begins at 0x1c)
             * Revert buffer is memory[0x1c:0x20]
             */
            uint256 constant InexactFraction_error_selector = 0xc63cf089;
            uint256 constant InexactFraction_error_length = 0x04;
            /*
             *  error OrderCriteriaResolverOutOfRange(uint8 side)
             *    - Defined in CriteriaResolutionErrors.sol
             *  Memory layout:
             *    - 0x00: Left-padded selector (data begins at 0x1c)
             *    - 0x20: side
             * Revert buffer is memory[0x1c:0x40]
             */
            uint256 constant OrderCriteriaResolverOutOfRange_error_selector = 0x133c37c6;
            uint256 constant OrderCriteriaResolverOutOfRange_error_side_ptr = 0x20;
            uint256 constant OrderCriteriaResolverOutOfRange_error_length = 0x24;
            /*
             *  error UnresolvedOfferCriteria(uint256 orderIndex, uint256 offerIndex)
             *    - Defined in CriteriaResolutionErrors.sol
             *  Memory layout:
             *    - 0x00: Left-padded selector (data begins at 0x1c)
             *    - 0x20: orderIndex
             *    - 0x40: offerIndex
             * Revert buffer is memory[0x1c:0x60]
             */
            uint256 constant UnresolvedOfferCriteria_error_selector = 0xd6929332;
            uint256 constant UnresolvedOfferCriteria_error_orderIndex_ptr = 0x20;
            uint256 constant UnresolvedOfferCriteria_error_offerIndex_ptr = 0x40;
            uint256 constant UnresolvedOfferCriteria_error_length = 0x44;
            /*
             *  error UnresolvedConsiderationCriteria(
             *      uint256 orderIndex,
             *      uint256 considerationIndex
             *  )
             *    - Defined in CriteriaResolutionErrors.sol
             *  Memory layout:
             *    - 0x00: Left-padded selector (data begins at 0x1c)
             *    - 0x20: orderIndex
             *    - 0x40: considerationIndex
             * Revert buffer is memory[0x1c:0x60]
             */
            uint256 constant UnresolvedConsiderationCriteria_error_selector = 0xa8930e9a;
            uint256 constant UnresolvedConsiderationCriteria_error_orderIndex_ptr = 0x20;
            uint256 constant UnresolvedConsiderationCriteria_error_considerationIdx_ptr = (
                0x40
            );
            uint256 constant UnresolvedConsiderationCriteria_error_length = 0x44;
            /*
             *  error OfferCriteriaResolverOutOfRange()
             *    - Defined in CriteriaResolutionErrors.sol
             *  Memory layout:
             *    - 0x00: Left-padded selector (data begins at 0x1c)
             * Revert buffer is memory[0x1c:0x20]
             */
            uint256 constant OfferCriteriaResolverOutOfRange_error_selector = 0xbfb3f8ce;
            // uint256 constant OfferCriteriaResolverOutOfRange_error_length = 0x04;
            /*
             *  error ConsiderationCriteriaResolverOutOfRange()
             *    - Defined in CriteriaResolutionErrors.sol
             *  Memory layout:
             *    - 0x00: Left-padded selector (data begins at 0x1c)
             * Revert buffer is memory[0x1c:0x20]
             */
            uint256 constant ConsiderationCriteriaResolverOutOfRange_error_selector = (
                0x6088d7de
            );
            uint256 constant ConsiderationCriteriaResolverOutOfRange_err_selector = (
                0x6088d7de
            );
            // uint256 constant ConsiderationCriteriaResolverOutOfRange_error_length = 0x04;
            /*
             *  error CriteriaNotEnabledForItem()
             *    - Defined in CriteriaResolutionErrors.sol
             *  Memory layout:
             *    - 0x00: Left-padded selector (data begins at 0x1c)
             * Revert buffer is memory[0x1c:0x20]
             */
            uint256 constant CriteriaNotEnabledForItem_error_selector = 0x94eb6af6;
            uint256 constant CriteriaNotEnabledForItem_error_length = 0x04;
            /*
             *  error InvalidProof()
             *    - Defined in CriteriaResolutionErrors.sol
             *  Memory layout:
             *    - 0x00: Left-padded selector (data begins at 0x1c)
             * Revert buffer is memory[0x1c:0x20]
             */
            uint256 constant InvalidProof_error_selector = 0x09bde339;
            uint256 constant InvalidProof_error_length = 0x04;
            /*
             *  error InvalidRestrictedOrder(bytes32 orderHash)
             *    - Defined in ZoneInteractionErrors.sol
             *  Memory layout:
             *    - 0x00: Left-padded selector (data begins at 0x1c)
             *    - 0x20: orderHash
             * Revert buffer is memory[0x1c:0x40]
             */
            uint256 constant InvalidRestrictedOrder_error_selector = 0xfb5014fc;
            uint256 constant InvalidRestrictedOrder_error_orderHash_ptr = 0x20;
            uint256 constant InvalidRestrictedOrder_error_length = 0x24;
            /*
             *  error InvalidContractOrder(bytes32 orderHash)
             *    - Defined in ZoneInteractionErrors.sol
             *  Memory layout:
             *    - 0x00: Left-padded selector (data begins at 0x1c)
             *    - 0x20: orderHash
             * Revert buffer is memory[0x1c:0x40]
             */
            uint256 constant InvalidContractOrder_error_selector = 0x93979285;
            uint256 constant InvalidContractOrder_error_orderHash_ptr = 0x20;
            uint256 constant InvalidContractOrder_error_length = 0x24;
            /*
             *  error BadSignatureV(uint8 v)
             *    - Defined in SignatureVerificationErrors.sol
             *  Memory layout:
             *    - 0x00: Left-padded selector (data begins at 0x1c)
             *    - 0x20: v
             * Revert buffer is memory[0x1c:0x40]
             */
            uint256 constant BadSignatureV_error_selector = 0x1f003d0a;
            uint256 constant BadSignatureV_error_v_ptr = 0x20;
            uint256 constant BadSignatureV_error_length = 0x24;
            /*
             *  error InvalidSigner()
             *    - Defined in SignatureVerificationErrors.sol
             *  Memory layout:
             *    - 0x00: Left-padded selector (data begins at 0x1c)
             * Revert buffer is memory[0x1c:0x20]
             */
            uint256 constant InvalidSigner_error_selector = 0x815e1d64;
            uint256 constant InvalidSigner_error_length = 0x04;
            /*
             *  error InvalidSignature()
             *    - Defined in SignatureVerificationErrors.sol
             *  Memory layout:
             *    - 0x00: Left-padded selector (data begins at 0x1c)
             * Revert buffer is memory[0x1c:0x20]
             */
            uint256 constant InvalidSignature_error_selector = 0x8baa579f;
            uint256 constant InvalidSignature_error_length = 0x04;
            /*
             *  error BadContractSignature()
             *    - Defined in SignatureVerificationErrors.sol
             *  Memory layout:
             *    - 0x00: Left-padded selector (data begins at 0x1c)
             * Revert buffer is memory[0x1c:0x20]
             */
            uint256 constant BadContractSignature_error_selector = 0x4f7fb80d;
            uint256 constant BadContractSignature_error_length = 0x04;
            /*
             *  error InvalidERC721TransferAmount(uint256 amount)
             *    - Defined in TokenTransferrerErrors.sol
             *  Memory layout:
             *    - 0x00: Left-padded selector (data begins at 0x1c)
             *    - 0x20: amount
             * Revert buffer is memory[0x1c:0x40]
             */
            uint256 constant InvalidERC721TransferAmount_error_selector = 0x69f95827;
            uint256 constant InvalidERC721TransferAmount_error_amount_ptr = 0x20;
            uint256 constant InvalidERC721TransferAmount_error_length = 0x24;
            /*
             *  error MissingItemAmount()
             *    - Defined in TokenTransferrerErrors.sol
             *  Memory layout:
             *    - 0x00: Left-padded selector (data begins at 0x1c)
             * Revert buffer is memory[0x1c:0x20]
             */
            uint256 constant MissingItemAmount_error_selector = 0x91b3e514;
            uint256 constant MissingItemAmount_error_length = 0x04;
            /*
             *  error UnusedItemParameters()
             *    - Defined in TokenTransferrerErrors.sol
             *  Memory layout:
             *    - 0x00: Left-padded selector (data begins at 0x1c)
             * Revert buffer is memory[0x1c:0x20]
             */
            uint256 constant UnusedItemParameters_error_selector = 0x6ab37ce7;
            uint256 constant UnusedItemParameters_error_length = 0x04;
            /*
             *  error NoReentrantCalls()
             *    - Defined in ReentrancyErrors.sol
             *  Memory layout:
             *    - 0x00: Left-padded selector (data begins at 0x1c)
             * Revert buffer is memory[0x1c:0x20]
             */
            uint256 constant NoReentrantCalls_error_selector = 0x7fa8a987;
            uint256 constant NoReentrantCalls_error_length = 0x04;
            /*
             *  error OrderAlreadyFilled(bytes32 orderHash)
             *    - Defined in ConsiderationEventsAndErrors.sol
             *  Memory layout:
             *    - 0x00: Left-padded selector (data begins at 0x1c)
             *    - 0x20: orderHash
             * Revert buffer is memory[0x1c:0x40]
             */
            uint256 constant OrderAlreadyFilled_error_selector = 0x10fda3e1;
            uint256 constant OrderAlreadyFilled_error_orderHash_ptr = 0x20;
            uint256 constant OrderAlreadyFilled_error_length = 0x24;
            /*
             *  error InvalidTime(uint256 startTime, uint256 endTime)
             *    - Defined in ConsiderationEventsAndErrors.sol
             *  Memory layout:
             *    - 0x00: Left-padded selector (data begins at 0x1c)
             *    - 0x20: startTime
             *    - 0x40: endTime
             * Revert buffer is memory[0x1c:0x60]
             */
            uint256 constant InvalidTime_error_selector = 0x21ccfeb7;
            uint256 constant InvalidTime_error_startTime_ptr = 0x20;
            uint256 constant InvalidTime_error_endTime_ptr = 0x40;
            uint256 constant InvalidTime_error_length = 0x44;
            /*
             *  error InvalidConduit(bytes32 conduitKey, address conduit)
             *    - Defined in ConsiderationEventsAndErrors.sol
             *  Memory layout:
             *    - 0x00: Left-padded selector (data begins at 0x1c)
             *    - 0x20: conduitKey
             *    - 0x40: conduit
             * Revert buffer is memory[0x1c:0x60]
             */
            uint256 constant InvalidConduit_error_selector = 0x1cf99b26;
            uint256 constant InvalidConduit_error_conduitKey_ptr = 0x20;
            uint256 constant InvalidConduit_error_conduit_ptr = 0x40;
            uint256 constant InvalidConduit_error_length = 0x44;
            /*
             *  error MissingOriginalConsiderationItems()
             *    - Defined in ConsiderationEventsAndErrors.sol
             *  Memory layout:
             *    - 0x00: Left-padded selector (data begins at 0x1c)
             * Revert buffer is memory[0x1c:0x20]
             */
            uint256 constant MissingOriginalConsiderationItems_error_selector = 0x466aa616;
            uint256 constant MissingOriginalConsiderationItems_error_length = 0x04;
            /*
             *  error InvalidCallToConduit(address conduit)
             *    - Defined in ConsiderationEventsAndErrors.sol
             *  Memory layout:
             *    - 0x00: Left-padded selector (data begins at 0x1c)
             *    - 0x20: conduit
             * Revert buffer is memory[0x1c:0x40]
             */
            uint256 constant InvalidCallToConduit_error_selector = 0xd13d53d4;
            uint256 constant InvalidCallToConduit_error_conduit_ptr = 0x20;
            uint256 constant InvalidCallToConduit_error_length = 0x24;
            /*
             *  error ConsiderationNotMet(
             *      uint256 orderIndex,
             *      uint256 considerationIndex,
             *      uint256 shortfallAmount
             *  )
             *    - Defined in ConsiderationEventsAndErrors.sol
             *  Memory layout:
             *    - 0x00: Left-padded selector (data begins at 0x1c)
             *    - 0x20: orderIndex
             *    - 0x40: considerationIndex
             *    - 0x60: shortfallAmount
             * Revert buffer is memory[0x1c:0x80]
             */
            uint256 constant ConsiderationNotMet_error_selector = 0xa5f54208;
            uint256 constant ConsiderationNotMet_error_orderIndex_ptr = 0x20;
            uint256 constant ConsiderationNotMet_error_considerationIndex_ptr = 0x40;
            uint256 constant ConsiderationNotMet_error_shortfallAmount_ptr = 0x60;
            uint256 constant ConsiderationNotMet_error_length = 0x64;
            /*
             *  error InsufficientNativeTokensSupplied()
             *    - Defined in ConsiderationEventsAndErrors.sol
             *  Memory layout:
             *    - 0x00: Left-padded selector (data begins at 0x1c)
             * Revert buffer is memory[0x1c:0x20]
             */
            uint256 constant InsufficientNativeTokensSupplied_error_selector = 0x8ffff980;
            uint256 constant InsufficientNativeTokensSupplied_error_length = 0x04;
            /*
             *  error NativeTokenTransferGenericFailure(address account, uint256 amount)
             *    - Defined in ConsiderationEventsAndErrors.sol
             *  Memory layout:
             *    - 0x00: Left-padded selector (data begins at 0x1c)
             *    - 0x20: account
             *    - 0x40: amount
             * Revert buffer is memory[0x1c:0x60]
             */
            uint256 constant NativeTokenTransferGenericFailure_error_selector = 0xbc806b96;
            uint256 constant NativeTokenTransferGenericFailure_error_account_ptr = 0x20;
            uint256 constant NativeTokenTransferGenericFailure_error_amount_ptr = 0x40;
            uint256 constant NativeTokenTransferGenericFailure_error_length = 0x44;
            /*
             *  error PartialFillsNotEnabledForOrder()
             *    - Defined in ConsiderationEventsAndErrors.sol
             *  Memory layout:
             *    - 0x00: Left-padded selector (data begins at 0x1c)
             * Revert buffer is memory[0x1c:0x20]
             */
            uint256 constant PartialFillsNotEnabledForOrder_error_selector = 0xa11b63ff;
            uint256 constant PartialFillsNotEnabledForOrder_error_length = 0x04;
            /*
             *  error OrderIsCancelled(bytes32 orderHash)
             *    - Defined in ConsiderationEventsAndErrors.sol
             *  Memory layout:
             *    - 0x00: Left-padded selector (data begins at 0x1c)
             *    - 0x20: orderHash
             * Revert buffer is memory[0x1c:0x40]
             */
            uint256 constant OrderIsCancelled_error_selector = 0x1a515574;
            uint256 constant OrderIsCancelled_error_orderHash_ptr = 0x20;
            uint256 constant OrderIsCancelled_error_length = 0x24;
            /*
             *  error OrderPartiallyFilled(bytes32 orderHash)
             *    - Defined in ConsiderationEventsAndErrors.sol
             *  Memory layout:
             *    - 0x00: Left-padded selector (data begins at 0x1c)
             *    - 0x20: orderHash
             * Revert buffer is memory[0x1c:0x40]
             */
            uint256 constant OrderPartiallyFilled_error_selector = 0xee9e0e63;
            uint256 constant OrderPartiallyFilled_error_orderHash_ptr = 0x20;
            uint256 constant OrderPartiallyFilled_error_length = 0x24;
            /*
             *  error CannotCancelOrder()
             *    - Defined in ConsiderationEventsAndErrors.sol
             *  Memory layout:
             *    - 0x00: Left-padded selector (data begins at 0x1c)
             * Revert buffer is memory[0x1c:0x20]
             */
            uint256 constant CannotCancelOrder_error_selector = 0xfed398fc;
            uint256 constant CannotCancelOrder_error_length = 0x04;
            /*
             *  error BadFraction()
             *    - Defined in ConsiderationEventsAndErrors.sol
             *  Memory layout:
             *    - 0x00: Left-padded selector (data begins at 0x1c)
             * Revert buffer is memory[0x1c:0x20]
             */
            uint256 constant BadFraction_error_selector = 0x5a052b32;
            uint256 constant BadFraction_error_length = 0x04;
            /*
             *  error InvalidMsgValue(uint256 value)
             *    - Defined in ConsiderationEventsAndErrors.sol
             *  Memory layout:
             *    - 0x00: Left-padded selector (data begins at 0x1c)
             *    - 0x20: value
             * Revert buffer is memory[0x1c:0x40]
             */
            uint256 constant InvalidMsgValue_error_selector = 0xa61be9f0;
            uint256 constant InvalidMsgValue_error_value_ptr = 0x20;
            uint256 constant InvalidMsgValue_error_length = 0x24;
            /*
             *  error InvalidBasicOrderParameterEncoding()
             *    - Defined in ConsiderationEventsAndErrors.sol
             *  Memory layout:
             *    - 0x00: Left-padded selector (data begins at 0x1c)
             * Revert buffer is memory[0x1c:0x20]
             */
            uint256 constant InvalidBasicOrderParameterEncoding_error_selector = 0x39f3e3fd;
            uint256 constant InvalidBasicOrderParameterEncoding_error_length = 0x04;
            /*
             *  error NoSpecifiedOrdersAvailable()
             *    - Defined in ConsiderationEventsAndErrors.sol
             *  Memory layout:
             *    - 0x00: Left-padded selector (data begins at 0x1c)
             * Revert buffer is memory[0x1c:0x20]
             */
            uint256 constant NoSpecifiedOrdersAvailable_error_selector = 0xd5da9a1b;
            uint256 constant NoSpecifiedOrdersAvailable_error_length = 0x04;
            /*
             *  error InvalidNativeOfferItem()
             *    - Defined in ConsiderationEventsAndErrors.sol
             *  Memory layout:
             *    - 0x00: Left-padded selector (data begins at 0x1c)
             * Revert buffer is memory[0x1c:0x20]
             */
            uint256 constant InvalidNativeOfferItem_error_selector = 0x12d3f5a3;
            uint256 constant InvalidNativeOfferItem_error_length = 0x04;
            /*
             *  error ConsiderationLengthNotEqualToTotalOriginal()
             *    - Defined in ConsiderationEventsAndErrors.sol
             *  Memory layout:
             *    - 0x00: Left-padded selector (data begins at 0x1c)
             * Revert buffer is memory[0x1c:0x20]
             */
            uint256 constant ConsiderationLengthNotEqualToTotalOriginal_error_selector = (
                0x2165628a
            );
            uint256 constant ConsiderationLengthNotEqualToTotalOriginal_error_length = 0x04;
            /*
             *  error Panic(uint256 code)
             *    - Built-in Solidity error
             *  Memory layout:
             *    - 0x00: Left-padded selector (data begins at 0x1c)
             *    - 0x20: code
             * Revert buffer is memory[0x1c:0x40]
             */
            uint256 constant Panic_error_selector = 0x4e487b71;
            uint256 constant Panic_error_code_ptr = 0x20;
            uint256 constant Panic_error_length = 0x24;
            uint256 constant Panic_arithmetic = 0x11;
            // uint256 constant Panic_resource = 0x41;
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.13;
            import { Side } from "../lib/ConsiderationEnums.sol";
            /**
             * @title FulfillmentApplicationErrors
             * @author 0age
             * @notice FulfillmentApplicationErrors contains errors related to fulfillment
             *         application and aggregation.
             */
            interface FulfillmentApplicationErrors {
                /**
                 * @dev Revert with an error when a fulfillment is provided that does not
                 *      declare at least one component as part of a call to fulfill
                 *      available orders.
                 */
                error MissingFulfillmentComponentOnAggregation(Side side);
                /**
                 * @dev Revert with an error when a fulfillment is provided that does not
                 *      declare at least one offer component and at least one consideration
                 *      component.
                 */
                error OfferAndConsiderationRequiredOnFulfillment();
                /**
                 * @dev Revert with an error when the initial offer item named by a
                 *      fulfillment component does not match the type, token, identifier,
                 *      or conduit preference of the initial consideration item.
                 *
                 * @param fulfillmentIndex The index of the fulfillment component that
                 *                         does not match the initial offer item.
                 */
                error MismatchedFulfillmentOfferAndConsiderationComponents(
                    uint256 fulfillmentIndex
                );
                /**
                 * @dev Revert with an error when an order or item index are out of range
                 *      or a fulfillment component does not match the type, token,
                 *      identifier, or conduit preference of the initial consideration item.
                 */
                error InvalidFulfillmentComponentData();
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.17;
            import { ItemType, Side } from "./ConsiderationEnums.sol";
            import {
                AdvancedOrder,
                CriteriaResolver,
                MemoryPointer,
                OfferItem,
                OrderParameters
            } from "./ConsiderationStructs.sol";
            import {
                _revertCriteriaNotEnabledForItem,
                _revertInvalidProof,
                _revertOrderCriteriaResolverOutOfRange,
                _revertUnresolvedConsiderationCriteria,
                _revertUnresolvedOfferCriteria
            } from "./ConsiderationErrors.sol";
            import {
                CriteriaResolutionErrors
            } from "../interfaces/CriteriaResolutionErrors.sol";
            import {
                OneWord,
                OneWordShift,
                OrderParameters_consideration_head_offset,
                Selector_length,
                TwoWords
            } from "./ConsiderationConstants.sol";
            import {
                ConsiderationCriteriaResolverOutOfRange_err_selector,
                Error_selector_offset,
                OfferCriteriaResolverOutOfRange_error_selector
            } from "./ConsiderationErrorConstants.sol";
            /**
             * @title CriteriaResolution
             * @author 0age
             * @notice CriteriaResolution contains a collection of pure functions related to
             *         resolving criteria-based items.
             */
            contract CriteriaResolution is CriteriaResolutionErrors {
                /**
                 * @dev Internal pure function to apply criteria resolvers containing
                 *      specific token identifiers and associated proofs to order items.
                 *
                 * @param advancedOrders     The orders to apply criteria resolvers to.
                 * @param criteriaResolvers  An array where each element contains a
                 *                           reference to a specific order as well as that
                 *                           order's offer or consideration, a token
                 *                           identifier, and a proof that the supplied token
                 *                           identifier is contained in the order's merkle
                 *                           root. Note that a root of zero indicates that
                 *                           any transferable token identifier is valid and
                 *                           that no proof needs to be supplied.
                 */
                function _applyCriteriaResolvers(
                    AdvancedOrder[] memory advancedOrders,
                    CriteriaResolver[] memory criteriaResolvers
                ) internal pure {
                    // Skip overflow checks as all for loops are indexed starting at zero.
                    unchecked {
                        // Retrieve length of criteria resolvers array and place on stack.
                        uint256 totalCriteriaResolvers = criteriaResolvers.length;
                        // Retrieve length of orders array and place on stack.
                        uint256 totalAdvancedOrders = advancedOrders.length;
                        // Iterate over each criteria resolver.
                        for (uint256 i = 0; i < totalCriteriaResolvers; ++i) {
                            // Retrieve the criteria resolver.
                            CriteriaResolver memory criteriaResolver = (
                                criteriaResolvers[i]
                            );
                            // Read the order index from memory and place it on the stack.
                            uint256 orderIndex = criteriaResolver.orderIndex;
                            // Ensure that the order index is in range.
                            if (orderIndex >= totalAdvancedOrders) {
                                _revertOrderCriteriaResolverOutOfRange(
                                    criteriaResolver.side
                                );
                            }
                            // Retrieve the referenced advanced order.
                            AdvancedOrder memory advancedOrder = advancedOrders[orderIndex];
                            // Skip criteria resolution for order if not fulfilled.
                            if (advancedOrder.numerator == 0) {
                                continue;
                            }
                            // Retrieve the parameters for the order.
                            OrderParameters memory orderParameters = (
                                advancedOrder.parameters
                            );
                            {
                                // Get a pointer to the list of items to give to
                                // _updateCriteriaItem. If the resolver refers to a
                                // consideration item, this array pointer will be replaced
                                // with the consideration array.
                                OfferItem[] memory items = orderParameters.offer;
                                // Read component index from memory and place it on stack.
                                uint256 componentIndex = criteriaResolver.index;
                                // Get error selector for `OfferCriteriaResolverOutOfRange`.
                                uint256 errorSelector = (
                                    OfferCriteriaResolverOutOfRange_error_selector
                                );
                                // If the resolver refers to a consideration item...
                                if (criteriaResolver.side != Side.OFFER) {
                                    // Get the pointer to `orderParameters.consideration`
                                    // Using the array directly has a significant impact on
                                    // the optimized compiler output.
                                    MemoryPointer considerationPtr = orderParameters
                                        .toMemoryPointer()
                                        .pptr(OrderParameters_consideration_head_offset);
                                    // Replace the items pointer with a pointer to the
                                    // consideration array.
                                    assembly {
                                        items := considerationPtr
                                    }
                                    // Replace the error selector with the selector for
                                    // `ConsiderationCriteriaResolverOutOfRange`.
                                    errorSelector = (
                                        ConsiderationCriteriaResolverOutOfRange_err_selector
                                    );
                                }
                                // Ensure that the component index is in range.
                                if (componentIndex >= items.length) {
                                    assembly {
                                        // Revert with either
                                        // `OfferCriteriaResolverOutOfRange()` or
                                        // `ConsiderationCriteriaResolverOutOfRange()`,
                                        // depending on whether the resolver refers to a
                                        // consideration item.
                                        mstore(0, errorSelector)
                                        // revert(abi.encodeWithSignature(
                                        //    "OfferCriteriaResolverOutOfRange()"
                                        // ))
                                        // or
                                        // revert(abi.encodeWithSignature(
                                        //    "ConsiderationCriteriaResolverOutOfRange()"
                                        // ))
                                        revert(Error_selector_offset, Selector_length)
                                    }
                                }
                                // Apply the criteria resolver to the item in question.
                                _updateCriteriaItem(
                                    items,
                                    componentIndex,
                                    criteriaResolver
                                );
                            }
                        }
                        // Iterate over each advanced order.
                        for (uint256 i = 0; i < totalAdvancedOrders; ++i) {
                            // Retrieve the advanced order.
                            AdvancedOrder memory advancedOrder = advancedOrders[i];
                            // Skip criteria resolution for order if not fulfilled.
                            if (advancedOrder.numerator == 0) {
                                continue;
                            }
                            // Retrieve the parameters for the order.
                            OrderParameters memory orderParameters = (
                                advancedOrder.parameters
                            );
                            // Read consideration length from memory and place on stack.
                            uint256 totalItems = orderParameters.consideration.length;
                            // Iterate over each consideration item on the order.
                            for (uint256 j = 0; j < totalItems; ++j) {
                                // Ensure item type no longer indicates criteria usage.
                                if (
                                    _isItemWithCriteria(
                                        orderParameters.consideration[j].itemType
                                    )
                                ) {
                                    _revertUnresolvedConsiderationCriteria(i, j);
                                }
                            }
                            // Read offer length from memory and place on stack.
                            totalItems = orderParameters.offer.length;
                            // Iterate over each offer item on the order.
                            for (uint256 j = 0; j < totalItems; ++j) {
                                // Ensure item type no longer indicates criteria usage.
                                if (
                                    _isItemWithCriteria(orderParameters.offer[j].itemType)
                                ) {
                                    _revertUnresolvedOfferCriteria(i, j);
                                }
                            }
                        }
                    }
                }
                /**
                 * @dev Internal pure function to update a criteria item.
                 *
                 * @param offer             The offer containing the item to update.
                 * @param componentIndex    The index of the item to update.
                 * @param criteriaResolver  The criteria resolver to use to update the item.
                 */
                function _updateCriteriaItem(
                    OfferItem[] memory offer,
                    uint256 componentIndex,
                    CriteriaResolver memory criteriaResolver
                ) internal pure {
                    // Retrieve relevant item using the component index.
                    OfferItem memory offerItem = offer[componentIndex];
                    // Read item type and criteria from memory & place on stack.
                    ItemType itemType = offerItem.itemType;
                    // Ensure the specified item type indicates criteria usage.
                    if (!_isItemWithCriteria(itemType)) {
                        _revertCriteriaNotEnabledForItem();
                    }
                    uint256 identifierOrCriteria = offerItem.identifierOrCriteria;
                    // If criteria is not 0 (i.e. a collection-wide criteria-based item)...
                    if (identifierOrCriteria != uint256(0)) {
                        // Verify identifier inclusion in criteria root using proof.
                        _verifyProof(
                            criteriaResolver.identifier,
                            identifierOrCriteria,
                            criteriaResolver.criteriaProof
                        );
                    } else if (criteriaResolver.criteriaProof.length != 0) {
                        // Revert if non-empty proof is supplied for a collection-wide item.
                        _revertInvalidProof();
                    }
                    // Update item type to remove criteria usage.
                    // Use assembly to operate on ItemType enum as a number.
                    ItemType newItemType;
                    assembly {
                        // Item type 4 becomes 2 and item type 5 becomes 3.
                        newItemType := sub(3, eq(itemType, 4))
                    }
                    offerItem.itemType = newItemType;
                    // Update identifier w/ supplied identifier.
                    offerItem.identifierOrCriteria = criteriaResolver.identifier;
                }
                /**
                 * @dev Internal pure function to check whether a given item type represents
                 *      a criteria-based ERC721 or ERC1155 item (e.g. an item that can be
                 *      resolved to one of a number of different identifiers at the time of
                 *      order fulfillment).
                 *
                 * @param itemType The item type in question.
                 *
                 * @return withCriteria A boolean indicating that the item type in question
                 *                      represents a criteria-based item.
                 */
                function _isItemWithCriteria(
                    ItemType itemType
                ) internal pure returns (bool withCriteria) {
                    // ERC721WithCriteria is ItemType 4. ERC1155WithCriteria is ItemType 5.
                    assembly {
                        withCriteria := gt(itemType, 3)
                    }
                }
                /**
                 * @dev Internal pure function to ensure that a given element is contained
                 *      in a merkle root via a supplied proof.
                 *
                 * @param leaf  The element for which to prove inclusion.
                 * @param root  The merkle root that inclusion will be proved against.
                 * @param proof The merkle proof.
                 */
                function _verifyProof(
                    uint256 leaf,
                    uint256 root,
                    bytes32[] memory proof
                ) internal pure {
                    // Declare a variable that will be used to determine proof validity.
                    bool isValid;
                    // Utilize assembly to efficiently verify the proof against the root.
                    assembly {
                        // Store the leaf at the beginning of scratch space.
                        mstore(0, leaf)
                        // Derive the hash of the leaf to use as the initial proof element.
                        let computedHash := keccak256(0, OneWord)
                        // Get memory start location of the first element in proof array.
                        let data := add(proof, OneWord)
                        // Iterate over each proof element to compute the root hash.
                        for {
                            // Left shift by 5 is equivalent to multiplying by 0x20.
                            let end := add(data, shl(OneWordShift, mload(proof)))
                        } lt(data, end) {
                            // Increment by one word at a time.
                            data := add(data, OneWord)
                        } {
                            // Get the proof element.
                            let loadedData := mload(data)
                            // Sort proof elements and place them in scratch space.
                            // Slot of `computedHash` in scratch space.
                            // If the condition is true: 0x20, otherwise: 0x00.
                            let scratch := shl(OneWordShift, gt(computedHash, loadedData))
                            // Store elements to hash contiguously in scratch space. Scratch
                            // space is 64 bytes (0x00 - 0x3f) & both elements are 32 bytes.
                            mstore(scratch, computedHash)
                            mstore(xor(scratch, OneWord), loadedData)
                            // Derive the updated hash.
                            computedHash := keccak256(0, TwoWords)
                        }
                        // Compare the final hash to the supplied root.
                        isValid := eq(computedHash, root)
                    }
                    // Revert if computed hash does not equal supplied root.
                    if (!isValid) {
                        _revertInvalidProof();
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.17;
            import {
                AmountDerivationErrors
            } from "../interfaces/AmountDerivationErrors.sol";
            import {
                Error_selector_offset,
                InexactFraction_error_length,
                InexactFraction_error_selector
            } from "./ConsiderationErrorConstants.sol";
            /**
             * @title AmountDeriver
             * @author 0age
             * @notice AmountDeriver contains view and pure functions related to deriving
             *         item amounts based on partial fill quantity and on linear
             *         interpolation based on current time when the start amount and end
             *         amount differ.
             */
            contract AmountDeriver is AmountDerivationErrors {
                /**
                 * @dev Internal view function to derive the current amount of a given item
                 *      based on the current price, the starting price, and the ending
                 *      price. If the start and end prices differ, the current price will be
                 *      interpolated on a linear basis. Note that this function expects that
                 *      the startTime parameter of orderParameters is not greater than the
                 *      current block timestamp and that the endTime parameter is greater
                 *      than the current block timestamp. If this condition is not upheld,
                 *      duration / elapsed / remaining variables will underflow.
                 *
                 * @param startAmount The starting amount of the item.
                 * @param endAmount   The ending amount of the item.
                 * @param startTime   The starting time of the order.
                 * @param endTime     The end time of the order.
                 * @param roundUp     A boolean indicating whether the resultant amount
                 *                    should be rounded up or down.
                 *
                 * @return amount The current amount.
                 */
                function _locateCurrentAmount(
                    uint256 startAmount,
                    uint256 endAmount,
                    uint256 startTime,
                    uint256 endTime,
                    bool roundUp
                ) internal view returns (uint256 amount) {
                    // Only modify end amount if it doesn't already equal start amount.
                    if (startAmount != endAmount) {
                        // Declare variables to derive in the subsequent unchecked scope.
                        uint256 duration;
                        uint256 elapsed;
                        uint256 remaining;
                        // Skip underflow checks as startTime <= block.timestamp < endTime.
                        unchecked {
                            // Derive the duration for the order and place it on the stack.
                            duration = endTime - startTime;
                            // Derive time elapsed since the order started & place on stack.
                            elapsed = block.timestamp - startTime;
                            // Derive time remaining until order expires and place on stack.
                            remaining = duration - elapsed;
                        }
                        // Aggregate new amounts weighted by time with rounding factor.
                        uint256 totalBeforeDivision = ((startAmount * remaining) +
                            (endAmount * elapsed));
                        // Use assembly to combine operations and skip divide-by-zero check.
                        assembly {
                            // Multiply by iszero(iszero(totalBeforeDivision)) to ensure
                            // amount is set to zero if totalBeforeDivision is zero,
                            // as intermediate overflow can occur if it is zero.
                            amount := mul(
                                iszero(iszero(totalBeforeDivision)),
                                // Subtract 1 from the numerator and add 1 to the result if
                                // roundUp is true to get the proper rounding direction.
                                // Division is performed with no zero check as duration
                                // cannot be zero as long as startTime < endTime.
                                add(
                                    div(sub(totalBeforeDivision, roundUp), duration),
                                    roundUp
                                )
                            )
                        }
                        // Return the current amount.
                        return amount;
                    }
                    // Return the original amount as startAmount == endAmount.
                    return endAmount;
                }
                /**
                 * @dev Internal pure function to return a fraction of a given value and to
                 *      ensure the resultant value does not have any fractional component.
                 *      Note that this function assumes that zero will never be supplied as
                 *      the denominator parameter; invalid / undefined behavior will result
                 *      should a denominator of zero be provided.
                 *
                 * @param numerator   A value indicating the portion of the order that
                 *                    should be filled.
                 * @param denominator A value indicating the total size of the order. Note
                 *                    that this value cannot be equal to zero.
                 * @param value       The value for which to compute the fraction.
                 *
                 * @return newValue The value after applying the fraction.
                 */
                function _getFraction(
                    uint256 numerator,
                    uint256 denominator,
                    uint256 value
                ) internal pure returns (uint256 newValue) {
                    // Return value early in cases where the fraction resolves to 1.
                    if (numerator == denominator) {
                        return value;
                    }
                    // Ensure fraction can be applied to the value with no remainder. Note
                    // that the denominator cannot be zero.
                    assembly {
                        // Ensure new value contains no remainder via mulmod operator.
                        // Credit to @hrkrshnn + @axic for proposing this optimal solution.
                        if mulmod(value, numerator, denominator) {
                            // Store left-padded selector with push4, mem[28:32] = selector
                            mstore(0, InexactFraction_error_selector)
                            // revert(abi.encodeWithSignature("InexactFraction()"))
                            revert(Error_selector_offset, InexactFraction_error_length)
                        }
                    }
                    // Multiply the numerator by the value and ensure no overflow occurs.
                    uint256 valueTimesNumerator = value * numerator;
                    // Divide and check for remainder. Note that denominator cannot be zero.
                    assembly {
                        // Perform division without zero check.
                        newValue := div(valueTimesNumerator, denominator)
                    }
                }
                /**
                 * @dev Internal view function to apply a fraction to a consideration
                 * or offer item.
                 *
                 * @param startAmount     The starting amount of the item.
                 * @param endAmount       The ending amount of the item.
                 * @param numerator       A value indicating the portion of the order that
                 *                        should be filled.
                 * @param denominator     A value indicating the total size of the order.
                 * @param startTime       The starting time of the order.
                 * @param endTime         The end time of the order.
                 * @param roundUp         A boolean indicating whether the resultant
                 *                        amount should be rounded up or down.
                 *
                 * @return amount The received item to transfer with the final amount.
                 */
                function _applyFraction(
                    uint256 startAmount,
                    uint256 endAmount,
                    uint256 numerator,
                    uint256 denominator,
                    uint256 startTime,
                    uint256 endTime,
                    bool roundUp
                ) internal view returns (uint256 amount) {
                    // If start amount equals end amount, apply fraction to end amount.
                    if (startAmount == endAmount) {
                        // Apply fraction to end amount.
                        amount = _getFraction(numerator, denominator, endAmount);
                    } else {
                        // Otherwise, apply fraction to both and interpolated final amount.
                        amount = _locateCurrentAmount(
                            _getFraction(numerator, denominator, startAmount),
                            _getFraction(numerator, denominator, endAmount),
                            startTime,
                            endTime,
                            roundUp
                        );
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.17;
            import {
                BasicOrderRouteType,
                ItemType,
                OrderType
            } from "./ConsiderationEnums.sol";
            import { BasicOrderParameters } from "./ConsiderationStructs.sol";
            import { OrderValidator } from "./OrderValidator.sol";
            import {
                _revertInsufficientNativeTokensSupplied,
                _revertInvalidMsgValue,
                _revertInvalidERC721TransferAmount,
                _revertUnusedItemParameters
            } from "./ConsiderationErrors.sol";
            import {
                AccumulatorDisarmed,
                AdditionalRecipient_size_shift,
                AdditionalRecipient_size,
                BasicOrder_additionalRecipients_data_cdPtr,
                BasicOrder_additionalRecipients_length_cdPtr,
                BasicOrder_basicOrderType_cdPtr,
                BasicOrder_common_params_size,
                BasicOrder_considerationAmount_cdPtr,
                BasicOrder_considerationHashesArray_ptr,
                BasicOrder_considerationIdentifier_cdPtr,
                BasicOrder_considerationItem_endAmount_ptr,
                BasicOrder_considerationItem_identifier_ptr,
                BasicOrder_considerationItem_itemType_ptr,
                BasicOrder_considerationItem_startAmount_ptr,
                BasicOrder_considerationItem_token_ptr,
                BasicOrder_considerationItem_typeHash_ptr,
                BasicOrder_considerationToken_cdPtr,
                BasicOrder_endTime_cdPtr,
                BasicOrder_fulfillerConduit_cdPtr,
                BasicOrder_offerAmount_cdPtr,
                BasicOrder_offeredItemByteMap,
                BasicOrder_offerer_cdPtr,
                BasicOrder_offererConduit_cdPtr,
                BasicOrder_offerIdentifier_cdPtr,
                BasicOrder_offerItem_endAmount_ptr,
                BasicOrder_offerItem_itemType_ptr,
                BasicOrder_offerItem_token_ptr,
                BasicOrder_offerItem_typeHash_ptr,
                BasicOrder_offerToken_cdPtr,
                BasicOrder_order_considerationHashes_ptr,
                BasicOrder_order_counter_ptr,
                BasicOrder_order_offerer_ptr,
                BasicOrder_order_offerHashes_ptr,
                BasicOrder_order_orderType_ptr,
                BasicOrder_order_startTime_ptr,
                BasicOrder_order_typeHash_ptr,
                BasicOrder_receivedItemByteMap,
                BasicOrder_startTime_cdPtr,
                BasicOrder_totalOriginalAdditionalRecipients_cdPtr,
                BasicOrder_zone_cdPtr,
                Common_token_offset,
                Conduit_execute_ConduitTransfer_length_ptr,
                Conduit_execute_ConduitTransfer_length,
                Conduit_execute_ConduitTransfer_offset_ptr,
                Conduit_execute_ConduitTransfer_ptr,
                Conduit_execute_signature,
                Conduit_execute_transferAmount_ptr,
                Conduit_execute_transferIdentifier_ptr,
                Conduit_execute_transferFrom_ptr,
                Conduit_execute_transferItemType_ptr,
                Conduit_execute_transferTo_ptr,
                Conduit_execute_transferToken_ptr,
                EIP712_ConsiderationItem_size,
                EIP712_OfferItem_size,
                EIP712_Order_size,
                FiveWords,
                FourWords,
                FreeMemoryPointerSlot,
                MaskOverLastTwentyBytes,
                OneConduitExecute_size,
                OneWord,
                OneWordShift,
                OrderFulfilled_baseOffset,
                OrderFulfilled_baseSize,
                OrderFulfilled_consideration_body_offset,
                OrderFulfilled_consideration_head_offset,
                OrderFulfilled_consideration_length_baseOffset,
                OrderFulfilled_fulfiller_offset,
                OrderFulfilled_offer_body_offset,
                OrderFulfilled_offer_head_offset,
                OrderFulfilled_offer_length_baseOffset,
                OrderFulfilled_selector,
                ReceivedItem_amount_offset,
                ReceivedItem_size,
                receivedItemsHash_ptr,
                ThreeWords,
                TwoWords,
                ZeroSlot
            } from "./ConsiderationConstants.sol";
            import {
                Error_selector_offset,
                InvalidBasicOrderParameterEncoding_error_length,
                InvalidBasicOrderParameterEncoding_error_selector,
                InvalidTime_error_endTime_ptr,
                InvalidTime_error_length,
                InvalidTime_error_selector,
                InvalidTime_error_startTime_ptr,
                MissingOriginalConsiderationItems_error_length,
                MissingOriginalConsiderationItems_error_selector,
                UnusedItemParameters_error_length,
                UnusedItemParameters_error_selector
            } from "./ConsiderationErrorConstants.sol";
            /**
             * @title BasicOrderFulfiller
             * @author 0age
             * @notice BasicOrderFulfiller contains functionality for fulfilling "basic"
             *         orders with minimal overhead. See documentation for details on what
             *         qualifies as a basic order.
             */
            contract BasicOrderFulfiller is OrderValidator {
                /**
                 * @dev Derive and set hashes, reference chainId, and associated domain
                 *      separator during deployment.
                 *
                 * @param conduitController A contract that deploys conduits, or proxies
                 *                          that may optionally be used to transfer approved
                 *                          ERC20/721/1155 tokens.
                 */
                constructor(address conduitController) OrderValidator(conduitController) {}
                /**
                 * @dev Internal function to fulfill an order offering an ERC20, ERC721, or
                 *      ERC1155 item by supplying Ether (or other native tokens), ERC20
                 *      tokens, an ERC721 item, or an ERC1155 item as consideration. Six
                 *      permutations are supported: Native token to ERC721, Native token to
                 *      ERC1155, ERC20 to ERC721, ERC20 to ERC1155, ERC721 to ERC20, and
                 *      ERC1155 to ERC20 (with native tokens supplied as msg.value). For an
                 *      order to be eligible for fulfillment via this method, it must
                 *      contain a single offer item (though that item may have a greater
                 *      amount if the item is not an ERC721). An arbitrary number of
                 *      "additional recipients" may also be supplied which will each receive
                 *      native tokens or ERC20 items from the fulfiller as consideration.
                 *      Refer to the documentation for a more comprehensive summary of how
                 *      to utilize this method and what orders are compatible with it.
                 *
                 * @param parameters Additional information on the fulfilled order. Note
                 *                   that the offerer and the fulfiller must first approve
                 *                   this contract (or their chosen conduit if indicated)
                 *                   before any tokens can be transferred. Also note that
                 *                   contract recipients of ERC1155 consideration items must
                 *                   implement `onERC1155Received` in order to receive those
                 *                   items.
                 *
                 * @return A boolean indicating whether the order has been fulfilled.
                 */
                function _validateAndFulfillBasicOrder(
                    BasicOrderParameters calldata parameters
                ) internal returns (bool) {
                    // Declare enums for order type & route to extract from basicOrderType.
                    BasicOrderRouteType route;
                    OrderType orderType;
                    // Declare additional recipient item type to derive from the route type.
                    ItemType additionalRecipientsItemType;
                    bytes32 orderHash;
                    // Utilize assembly to extract the order type and the basic order route.
                    assembly {
                        // Read basicOrderType from calldata.
                        let basicOrderType := calldataload(BasicOrder_basicOrderType_cdPtr)
                        // Mask all but 2 least-significant bits to derive the order type.
                        orderType := and(basicOrderType, 3)
                        // Divide basicOrderType by four to derive the route.
                        route := shr(2, basicOrderType)
                        // If route > 1 additionalRecipient items are ERC20 (1) else native
                        // token (0).
                        additionalRecipientsItemType := gt(route, 1)
                    }
                    {
                        // Declare temporary variable for enforcing payable status.
                        bool correctPayableStatus;
                        // Utilize assembly to compare the route to the callvalue.
                        assembly {
                            // route 0 and 1 are payable, otherwise route is not payable.
                            correctPayableStatus := eq(
                                additionalRecipientsItemType,
                                iszero(callvalue())
                            )
                        }
                        // Revert if msg.value has not been supplied as part of payable
                        // routes or has been supplied as part of non-payable routes.
                        if (!correctPayableStatus) {
                            _revertInvalidMsgValue(msg.value);
                        }
                    }
                    // Declare more arguments that will be derived from route and calldata.
                    address additionalRecipientsToken;
                    ItemType offeredItemType;
                    bool offerTypeIsAdditionalRecipientsType;
                    // Declare scope for received item type to manage stack pressure.
                    {
                        ItemType receivedItemType;
                        // Utilize assembly to retrieve function arguments and cast types.
                        assembly {
                            // Check if offered item type == additional recipient item type.
                            offerTypeIsAdditionalRecipientsType := gt(route, 3)
                            // If route > 3 additionalRecipientsToken is at 0xc4 else 0x24.
                            additionalRecipientsToken := calldataload(
                                add(
                                    BasicOrder_considerationToken_cdPtr,
                                    mul(
                                        offerTypeIsAdditionalRecipientsType,
                                        BasicOrder_common_params_size
                                    )
                                )
                            )
                            // If route > 2, receivedItemType is route - 2. If route is 2,
                            // the receivedItemType is ERC20 (1). Otherwise, it is native
                            // token (0).
                            receivedItemType := byte(route, BasicOrder_receivedItemByteMap)
                            // If route > 3, offeredItemType is ERC20 (1). Route is 2 or 3,
                            // offeredItemType = route. Route is 0 or 1, it is route + 2.
                            offeredItemType := byte(route, BasicOrder_offeredItemByteMap)
                        }
                        // Derive & validate order using parameters and update order status.
                        orderHash = _prepareBasicFulfillmentFromCalldata(
                            parameters,
                            orderType,
                            receivedItemType,
                            additionalRecipientsItemType,
                            additionalRecipientsToken,
                            offeredItemType
                        );
                    }
                    // Declare conduitKey argument used by transfer functions.
                    bytes32 conduitKey;
                    // Utilize assembly to derive conduit (if relevant) based on route.
                    assembly {
                        // use offerer conduit for routes 0-3, fulfiller conduit otherwise.
                        conduitKey := calldataload(
                            add(
                                BasicOrder_offererConduit_cdPtr,
                                shl(OneWordShift, offerTypeIsAdditionalRecipientsType)
                            )
                        )
                    }
                    // Transfer tokens based on the route.
                    if (additionalRecipientsItemType == ItemType.NATIVE) {
                        // Ensure neither consideration token nor identifier are set. Note
                        // that dirty upper bits in the consideration token will still cause
                        // this error to be thrown.
                        assembly {
                            if or(
                                calldataload(BasicOrder_considerationToken_cdPtr),
                                calldataload(BasicOrder_considerationIdentifier_cdPtr)
                            ) {
                                // Store left-padded selector with push4 (reduces bytecode),
                                // mem[28:32] = selector
                                mstore(0, UnusedItemParameters_error_selector)
                                // revert(abi.encodeWithSignature("UnusedItemParameters()"))
                                revert(
                                    Error_selector_offset,
                                    UnusedItemParameters_error_length
                                )
                            }
                        }
                        // Transfer the ERC721 or ERC1155 item, bypassing the accumulator.
                        _transferIndividual721Or1155Item(offeredItemType, conduitKey);
                        // Transfer native to recipients, return excess to caller & wrap up.
                        _transferNativeTokensAndFinalize();
                    } else {
                        // Initialize an accumulator array. From this point forward, no new
                        // memory regions can be safely allocated until the accumulator is
                        // no longer being utilized, as the accumulator operates in an
                        // open-ended fashion from this memory pointer; existing memory may
                        // still be accessed and modified, however.
                        bytes memory accumulator = new bytes(AccumulatorDisarmed);
                        // Choose transfer method for ERC721 or ERC1155 item based on route.
                        if (route == BasicOrderRouteType.ERC20_TO_ERC721) {
                            // Transfer ERC721 to caller using offerer's conduit preference.
                            _transferERC721(
                                parameters.offerToken,
                                parameters.offerer,
                                msg.sender,
                                parameters.offerIdentifier,
                                parameters.offerAmount,
                                conduitKey,
                                accumulator
                            );
                        } else if (route == BasicOrderRouteType.ERC20_TO_ERC1155) {
                            // Transfer ERC1155 to caller with offerer's conduit preference.
                            _transferERC1155(
                                parameters.offerToken,
                                parameters.offerer,
                                msg.sender,
                                parameters.offerIdentifier,
                                parameters.offerAmount,
                                conduitKey,
                                accumulator
                            );
                        } else if (route == BasicOrderRouteType.ERC721_TO_ERC20) {
                            // Transfer ERC721 to offerer using caller's conduit preference.
                            _transferERC721(
                                parameters.considerationToken,
                                msg.sender,
                                parameters.offerer,
                                parameters.considerationIdentifier,
                                parameters.considerationAmount,
                                conduitKey,
                                accumulator
                            );
                        } else {
                            // route == BasicOrderRouteType.ERC1155_TO_ERC20
                            // Transfer ERC1155 to offerer with caller's conduit preference.
                            _transferERC1155(
                                parameters.considerationToken,
                                msg.sender,
                                parameters.offerer,
                                parameters.considerationIdentifier,
                                parameters.considerationAmount,
                                conduitKey,
                                accumulator
                            );
                        }
                        // Transfer ERC20 tokens to all recipients and wrap up.
                        _transferERC20AndFinalize(
                            offerTypeIsAdditionalRecipientsType,
                            accumulator
                        );
                        // Trigger any remaining accumulated transfers via call to conduit.
                        _triggerIfArmed(accumulator);
                    }
                    // Determine whether order is restricted and, if so, that it is valid.
                    _assertRestrictedBasicOrderValidity(orderHash, orderType, parameters);
                    // Clear the reentrancy guard.
                    _clearReentrancyGuard();
                    return true;
                }
                /**
                 * @dev Internal function to prepare fulfillment of a basic order with
                 *      manual calldata and memory access. This calculates the order hash,
                 *      emits an OrderFulfilled event, and asserts basic order validity.
                 *      Note that calldata offsets must be validated as this function
                 *      accesses constant calldata pointers for dynamic types that match
                 *      default ABI encoding, but valid ABI encoding can use arbitrary
                 *      offsets. Checking that the offsets were produced by default encoding
                 *      will ensure that other functions using Solidity's calldata accessors
                 *      (which calculate pointers from the stored offsets) are reading the
                 *      same data as the order hash is derived from. Also note that this
                 *      function accesses memory directly.
                 *
                 * @param parameters                   The parameters of the basic order.
                 * @param orderType                    The order type.
                 * @param receivedItemType             The item type of the initial
                 *                                     consideration item on the order.
                 * @param additionalRecipientsItemType The item type of any additional
                 *                                     consideration item on the order.
                 * @param additionalRecipientsToken    The ERC20 token contract address (if
                 *                                     applicable) for any additional
                 *                                     consideration item on the order.
                 * @param offeredItemType              The item type of the offered item on
                 *                                     the order.
                 * @return orderHash The calculated order hash.
                 */
                function _prepareBasicFulfillmentFromCalldata(
                    BasicOrderParameters calldata parameters,
                    OrderType orderType,
                    ItemType receivedItemType,
                    ItemType additionalRecipientsItemType,
                    address additionalRecipientsToken,
                    ItemType offeredItemType
                ) internal returns (bytes32 orderHash) {
                    // Ensure this function cannot be triggered during a reentrant call.
                    _setReentrancyGuard(false); // Native tokens rejected during execution.
                    // Verify that calldata offsets for all dynamic types were produced by
                    // default encoding. This ensures that the constants used for calldata
                    // pointers to dynamic types are the same as those calculated by
                    // Solidity using their offsets. Also verify that the basic order type
                    // is within range.
                    _assertValidBasicOrderParameters();
                    // Check for invalid time and missing original consideration items.
                    // Utilize assembly so that constant calldata pointers can be applied.
                    assembly {
                        // Ensure current timestamp is between order start time & end time.
                        if or(
                            gt(calldataload(BasicOrder_startTime_cdPtr), timestamp()),
                            iszero(gt(calldataload(BasicOrder_endTime_cdPtr), timestamp()))
                        ) {
                            // Store left-padded selector with push4 (reduces bytecode),
                            // mem[28:32] = selector
                            mstore(0, InvalidTime_error_selector)
                            // Store arguments.
                            mstore(
                                InvalidTime_error_startTime_ptr,
                                calldataload(BasicOrder_startTime_cdPtr)
                            )
                            mstore(
                                InvalidTime_error_endTime_ptr,
                                calldataload(BasicOrder_endTime_cdPtr)
                            )
                            // revert(abi.encodeWithSignature(
                            //     "InvalidTime(uint256,uint256)",
                            //     startTime,
                            //     endTime
                            // ))
                            revert(Error_selector_offset, InvalidTime_error_length)
                        }
                        // Ensure consideration array length isn't less than total original.
                        if lt(
                            calldataload(BasicOrder_additionalRecipients_length_cdPtr),
                            calldataload(BasicOrder_totalOriginalAdditionalRecipients_cdPtr)
                        ) {
                            // Store left-padded selector with push4 (reduces bytecode),
                            // mem[28:32] = selector
                            mstore(0, MissingOriginalConsiderationItems_error_selector)
                            // revert(abi.encodeWithSignature(
                            //     "MissingOriginalConsiderationItems()"
                            // ))
                            revert(
                                Error_selector_offset,
                                MissingOriginalConsiderationItems_error_length
                            )
                        }
                    }
                    {
                        /**
                         * First, handle consideration items. Memory Layout:
                         *  0x60: final hash of the array of consideration item hashes
                         *  0x80-0x160: reused space for EIP712 hashing of each item
                         *   - 0x80: ConsiderationItem EIP-712 typehash (constant)
                         *   - 0xa0: itemType
                         *   - 0xc0: token
                         *   - 0xe0: identifier
                         *   - 0x100: startAmount
                         *   - 0x120: endAmount
                         *   - 0x140: recipient
                         *  0x160-END_ARR: array of consideration item hashes
                         *   - 0x160: primary consideration item EIP712 hash
                         *   - 0x180-END_ARR: additional recipient item EIP712 hashes
                         *  END_ARR: beginning of data for OrderFulfilled event
                         *   - END_ARR + 0x120: length of ReceivedItem array
                         *   - END_ARR + 0x140: beginning of data for first ReceivedItem
                         * (Note: END_ARR = 0x180 + RECIPIENTS_LENGTH * 0x20)
                         */
                        // Load consideration item typehash from runtime and place on stack.
                        bytes32 typeHash = _CONSIDERATION_ITEM_TYPEHASH;
                        // Utilize assembly to enable reuse of memory regions and use
                        // constant pointers when possible.
                        assembly {
                            /*
                             * 1. Calculate the EIP712 ConsiderationItem hash for the
                             * primary consideration item of the basic order.
                             */
                            // Write ConsiderationItem type hash and item type to memory.
                            mstore(BasicOrder_considerationItem_typeHash_ptr, typeHash)
                            mstore(
                                BasicOrder_considerationItem_itemType_ptr,
                                receivedItemType
                            )
                            // Copy calldata region with (token, identifier, amount) from
                            // BasicOrderParameters to ConsiderationItem. The
                            // considerationAmount is written to startAmount and endAmount
                            // as basic orders do not have dynamic amounts.
                            calldatacopy(
                                BasicOrder_considerationItem_token_ptr,
                                BasicOrder_considerationToken_cdPtr,
                                ThreeWords
                            )
                            // Copy calldata region with considerationAmount and offerer
                            // from BasicOrderParameters to endAmount and recipient in
                            // ConsiderationItem.
                            calldatacopy(
                                BasicOrder_considerationItem_endAmount_ptr,
                                BasicOrder_considerationAmount_cdPtr,
                                TwoWords
                            )
                            // Calculate EIP712 ConsiderationItem hash and store it in the
                            // array of EIP712 consideration hashes.
                            mstore(
                                BasicOrder_considerationHashesArray_ptr,
                                keccak256(
                                    BasicOrder_considerationItem_typeHash_ptr,
                                    EIP712_ConsiderationItem_size
                                )
                            )
                            /*
                             * 2. Write a ReceivedItem struct for the primary consideration
                             * item to the consideration array in OrderFulfilled.
                             */
                            // Get the length of the additional recipients array.
                            let totalAdditionalRecipients := calldataload(
                                BasicOrder_additionalRecipients_length_cdPtr
                            )
                            // Calculate pointer to length of OrderFulfilled consideration
                            // array.
                            let eventConsiderationArrPtr := add(
                                OrderFulfilled_consideration_length_baseOffset,
                                shl(OneWordShift, totalAdditionalRecipients)
                            )
                            // Set the length of the consideration array to the number of
                            // additional recipients, plus one for the primary consideration
                            // item.
                            mstore(
                                eventConsiderationArrPtr,
                                add(totalAdditionalRecipients, 1)
                            )
                            // Overwrite the consideration array pointer so it points to the
                            // body of the first element
                            eventConsiderationArrPtr := add(
                                eventConsiderationArrPtr,
                                OneWord
                            )
                            // Set itemType at start of the ReceivedItem memory region.
                            mstore(eventConsiderationArrPtr, receivedItemType)
                            // Copy calldata region (token, identifier, amount & recipient)
                            // from BasicOrderParameters to ReceivedItem memory.
                            calldatacopy(
                                add(eventConsiderationArrPtr, Common_token_offset),
                                BasicOrder_considerationToken_cdPtr,
                                FourWords
                            )
                            /*
                             * 3. Calculate EIP712 ConsiderationItem hashes for original
                             * additional recipients and add a ReceivedItem for each to the
                             * consideration array in the OrderFulfilled event. The original
                             * additional recipients are all the consideration items signed
                             * by the offerer aside from the primary consideration items of
                             * the order. Uses memory region from 0x80-0x160 as a buffer for
                             * calculating EIP712 ConsiderationItem hashes.
                             */
                            // Put pointer to consideration hashes array on the stack.
                            // This will be updated as each additional recipient is hashed
                            let
                                considerationHashesPtr
                            := BasicOrder_considerationHashesArray_ptr
                            // Write item type, token, & identifier for additional recipient
                            // to memory region for hashing EIP712 ConsiderationItem; these
                            // values will be reused for each recipient.
                            mstore(
                                BasicOrder_considerationItem_itemType_ptr,
                                additionalRecipientsItemType
                            )
                            mstore(
                                BasicOrder_considerationItem_token_ptr,
                                additionalRecipientsToken
                            )
                            mstore(BasicOrder_considerationItem_identifier_ptr, 0)
                            // Declare a stack variable where all additional recipients will
                            // be combined to guard against providing dirty upper bits.
                            let combinedAdditionalRecipients
                            // Read length of the additionalRecipients array from calldata
                            // and iterate.
                            totalAdditionalRecipients := calldataload(
                                BasicOrder_totalOriginalAdditionalRecipients_cdPtr
                            )
                            let i := 0
                            for {} lt(i, totalAdditionalRecipients) {
                                i := add(i, 1)
                            } {
                                /*
                                 * Calculate EIP712 ConsiderationItem hash for recipient.
                                 */
                                // Retrieve calldata pointer for additional recipient.
                                let additionalRecipientCdPtr := add(
                                    BasicOrder_additionalRecipients_data_cdPtr,
                                    mul(AdditionalRecipient_size, i)
                                )
                                // Copy startAmount from calldata to the ConsiderationItem
                                // struct.
                                calldatacopy(
                                    BasicOrder_considerationItem_startAmount_ptr,
                                    additionalRecipientCdPtr,
                                    OneWord
                                )
                                // Copy endAmount and recipient from calldata to the
                                // ConsiderationItem struct.
                                calldatacopy(
                                    BasicOrder_considerationItem_endAmount_ptr,
                                    additionalRecipientCdPtr,
                                    AdditionalRecipient_size
                                )
                                // Include the recipient as part of combined recipients.
                                combinedAdditionalRecipients := or(
                                    combinedAdditionalRecipients,
                                    calldataload(add(additionalRecipientCdPtr, OneWord))
                                )
                                // Add 1 word to the pointer as part of each loop to reduce
                                // operations needed to get local offset into the array.
                                considerationHashesPtr := add(
                                    considerationHashesPtr,
                                    OneWord
                                )
                                // Calculate EIP712 ConsiderationItem hash and store it in
                                // the array of consideration hashes.
                                mstore(
                                    considerationHashesPtr,
                                    keccak256(
                                        BasicOrder_considerationItem_typeHash_ptr,
                                        EIP712_ConsiderationItem_size
                                    )
                                )
                                /*
                                 * Write ReceivedItem to OrderFulfilled data.
                                 */
                                // At this point, eventConsiderationArrPtr points to the
                                // beginning of the ReceivedItem struct of the previous
                                // element in the array. Increase it by the size of the
                                // struct to arrive at the pointer for the current element.
                                eventConsiderationArrPtr := add(
                                    eventConsiderationArrPtr,
                                    ReceivedItem_size
                                )
                                // Write itemType to the ReceivedItem struct.
                                mstore(
                                    eventConsiderationArrPtr,
                                    additionalRecipientsItemType
                                )
                                // Write token to the next word of the ReceivedItem struct.
                                mstore(
                                    add(eventConsiderationArrPtr, OneWord),
                                    additionalRecipientsToken
                                )
                                // Copy endAmount & recipient words to ReceivedItem struct.
                                calldatacopy(
                                    add(
                                        eventConsiderationArrPtr,
                                        ReceivedItem_amount_offset
                                    ),
                                    additionalRecipientCdPtr,
                                    TwoWords
                                )
                            }
                            /*
                             * 4. Hash packed array of ConsiderationItem EIP712 hashes:
                             *   `keccak256(abi.encodePacked(receivedItemHashes))`
                             * Note that it is set at 0x60 — all other memory begins at
                             * 0x80. 0x60 is the "zero slot" and will be restored at the end
                             * of the assembly section and before required by the compiler.
                             */
                            mstore(
                                receivedItemsHash_ptr,
                                keccak256(
                                    BasicOrder_considerationHashesArray_ptr,
                                    shl(OneWordShift, add(totalAdditionalRecipients, 1))
                                )
                            )
                            /*
                             * 5. Add a ReceivedItem for each tip to the consideration array
                             * in the OrderFulfilled event. The tips are all the
                             * consideration items that were not signed by the offerer and
                             * were provided by the fulfiller.
                             */
                            // Overwrite length to length of the additionalRecipients array.
                            totalAdditionalRecipients := calldataload(
                                BasicOrder_additionalRecipients_length_cdPtr
                            )
                            for {} lt(i, totalAdditionalRecipients) {
                                i := add(i, 1)
                            } {
                                // Retrieve calldata pointer for additional recipient.
                                let additionalRecipientCdPtr := add(
                                    BasicOrder_additionalRecipients_data_cdPtr,
                                    mul(AdditionalRecipient_size, i)
                                )
                                // At this point, eventConsiderationArrPtr points to the
                                // beginning of the ReceivedItem struct of the previous
                                // element in the array. Increase it by the size of the
                                // struct to arrive at the pointer for the current element.
                                eventConsiderationArrPtr := add(
                                    eventConsiderationArrPtr,
                                    ReceivedItem_size
                                )
                                // Write itemType to the ReceivedItem struct.
                                mstore(
                                    eventConsiderationArrPtr,
                                    additionalRecipientsItemType
                                )
                                // Write token to the next word of the ReceivedItem struct.
                                mstore(
                                    add(eventConsiderationArrPtr, OneWord),
                                    additionalRecipientsToken
                                )
                                // Copy endAmount & recipient words to ReceivedItem struct.
                                calldatacopy(
                                    add(
                                        eventConsiderationArrPtr,
                                        ReceivedItem_amount_offset
                                    ),
                                    additionalRecipientCdPtr,
                                    TwoWords
                                )
                                // Include the recipient as part of combined recipients.
                                combinedAdditionalRecipients := or(
                                    combinedAdditionalRecipients,
                                    calldataload(add(additionalRecipientCdPtr, OneWord))
                                )
                            }
                            // Ensure no dirty upper bits on combined additional recipients.
                            if gt(combinedAdditionalRecipients, MaskOverLastTwentyBytes) {
                                // Store left-padded selector with push4 (reduces bytecode),
                                // mem[28:32] = selector
                                mstore(0, InvalidBasicOrderParameterEncoding_error_selector)
                                // revert(abi.encodeWithSignature(
                                //     "InvalidBasicOrderParameterEncoding()"
                                // ))
                                revert(
                                    Error_selector_offset,
                                    InvalidBasicOrderParameterEncoding_error_length
                                )
                            }
                        }
                    }
                    {
                        /**
                         * Next, handle offered items. Memory Layout:
                         *  EIP712 data for OfferItem
                         *   - 0x80:  OfferItem EIP-712 typehash (constant)
                         *   - 0xa0:  itemType
                         *   - 0xc0:  token
                         *   - 0xe0:  identifier (reused for offeredItemsHash)
                         *   - 0x100: startAmount
                         *   - 0x120: endAmount
                         */
                        // Place offer item typehash on the stack.
                        bytes32 typeHash = _OFFER_ITEM_TYPEHASH;
                        // Utilize assembly to enable reuse of memory regions when possible.
                        assembly {
                            /*
                             * 1. Calculate OfferItem EIP712 hash
                             */
                            // Write the OfferItem typeHash to memory.
                            mstore(BasicOrder_offerItem_typeHash_ptr, typeHash)
                            // Write the OfferItem item type to memory.
                            mstore(BasicOrder_offerItem_itemType_ptr, offeredItemType)
                            // Copy calldata region with (offerToken, offerIdentifier,
                            // offerAmount) from OrderParameters to (token, identifier,
                            // startAmount) in OfferItem struct. The offerAmount is written
                            // to startAmount and endAmount as basic orders do not have
                            // dynamic amounts.
                            calldatacopy(
                                BasicOrder_offerItem_token_ptr,
                                BasicOrder_offerToken_cdPtr,
                                ThreeWords
                            )
                            // Copy offerAmount from calldata to endAmount in OfferItem
                            // struct.
                            calldatacopy(
                                BasicOrder_offerItem_endAmount_ptr,
                                BasicOrder_offerAmount_cdPtr,
                                OneWord
                            )
                            // Compute EIP712 OfferItem hash, write result to scratch space:
                            //   `keccak256(abi.encode(offeredItem))`
                            mstore(
                                0,
                                keccak256(
                                    BasicOrder_offerItem_typeHash_ptr,
                                    EIP712_OfferItem_size
                                )
                            )
                            /*
                             * 2. Calculate hash of array of EIP712 hashes and write the
                             * result to the corresponding OfferItem struct:
                             *   `keccak256(abi.encodePacked(offerItemHashes))`
                             */
                            mstore(BasicOrder_order_offerHashes_ptr, keccak256(0, OneWord))
                            /*
                             * 3. Write SpentItem to offer array in OrderFulfilled event.
                             */
                            let eventConsiderationArrPtr := add(
                                OrderFulfilled_offer_length_baseOffset,
                                shl(
                                    OneWordShift,
                                    calldataload(
                                        BasicOrder_additionalRecipients_length_cdPtr
                                    )
                                )
                            )
                            // Set a length of 1 for the offer array.
                            mstore(eventConsiderationArrPtr, 1)
                            // Write itemType to the SpentItem struct.
                            mstore(add(eventConsiderationArrPtr, OneWord), offeredItemType)
                            // Copy calldata region with (offerToken, offerIdentifier,
                            // offerAmount) from OrderParameters to (token, identifier,
                            // amount) in SpentItem struct.
                            calldatacopy(
                                add(eventConsiderationArrPtr, AdditionalRecipient_size),
                                BasicOrder_offerToken_cdPtr,
                                ThreeWords
                            )
                        }
                    }
                    {
                        /**
                         * Once consideration items and offer items have been handled,
                         * derive the final order hash. Memory Layout:
                         *  0x80-0x1c0: EIP712 data for order
                         *   - 0x80:   Order EIP-712 typehash (constant)
                         *   - 0xa0:   orderParameters.offerer
                         *   - 0xc0:   orderParameters.zone
                         *   - 0xe0:   keccak256(abi.encodePacked(offerHashes))
                         *   - 0x100:  keccak256(abi.encodePacked(considerationHashes))
                         *   - 0x120:  orderParameters.basicOrderType (% 4 = orderType)
                         *   - 0x140:  orderParameters.startTime
                         *   - 0x160:  orderParameters.endTime
                         *   - 0x180:  orderParameters.zoneHash
                         *   - 0x1a0:  orderParameters.salt
                         *   - 0x1c0:  orderParameters.conduitKey
                         *   - 0x1e0:  _counters[orderParameters.offerer] (from storage)
                         */
                        // Read the offerer from calldata and place on the stack.
                        address offerer;
                        assembly {
                            offerer := calldataload(BasicOrder_offerer_cdPtr)
                        }
                        // Read offerer's current counter from storage and place on stack.
                        uint256 counter = _getCounter(offerer);
                        // Load order typehash from runtime code and place on stack.
                        bytes32 typeHash = _ORDER_TYPEHASH;
                        assembly {
                            // Set the OrderItem typeHash in memory.
                            mstore(BasicOrder_order_typeHash_ptr, typeHash)
                            // Copy offerer and zone from OrderParameters in calldata to the
                            // Order struct.
                            calldatacopy(
                                BasicOrder_order_offerer_ptr,
                                BasicOrder_offerer_cdPtr,
                                TwoWords
                            )
                            // Copy receivedItemsHash from zero slot to the Order struct.
                            mstore(
                                BasicOrder_order_considerationHashes_ptr,
                                mload(receivedItemsHash_ptr)
                            )
                            // Write the supplied orderType to the Order struct.
                            mstore(BasicOrder_order_orderType_ptr, orderType)
                            // Copy startTime, endTime, zoneHash, salt & conduit from
                            // calldata to the Order struct.
                            calldatacopy(
                                BasicOrder_order_startTime_ptr,
                                BasicOrder_startTime_cdPtr,
                                FiveWords
                            )
                            // Write offerer's counter, retrieved from storage, to struct.
                            mstore(BasicOrder_order_counter_ptr, counter)
                            // Compute the EIP712 Order hash.
                            orderHash := keccak256(
                                BasicOrder_order_typeHash_ptr,
                                EIP712_Order_size
                            )
                        }
                    }
                    assembly {
                        /**
                         * After the order hash has been derived, emit OrderFulfilled event:
                         *   event OrderFulfilled(
                         *     bytes32 orderHash,
                         *     address indexed offerer,
                         *     address indexed zone,
                         *     address fulfiller,
                         *     SpentItem[] offer,
                         *       > (itemType, token, id, amount)
                         *     ReceivedItem[] consideration
                         *       > (itemType, token, id, amount, recipient)
                         *   )
                         * topic0 - OrderFulfilled event signature
                         * topic1 - offerer
                         * topic2 - zone
                         * data:
                         *  - 0x00: orderHash
                         *  - 0x20: fulfiller
                         *  - 0x40: offer arr ptr (0x80)
                         *  - 0x60: consideration arr ptr (0x120)
                         *  - 0x80: offer arr len (1)
                         *  - 0xa0: offer.itemType
                         *  - 0xc0: offer.token
                         *  - 0xe0: offer.identifier
                         *  - 0x100: offer.amount
                         *  - 0x120: 1 + recipients.length
                         *  - 0x140: recipient 0
                         */
                        // Derive pointer to start of OrderFulfilled event data.
                        let eventDataPtr := add(
                            OrderFulfilled_baseOffset,
                            shl(
                                OneWordShift,
                                calldataload(BasicOrder_additionalRecipients_length_cdPtr)
                            )
                        )
                        // Write the order hash to the head of the event's data region.
                        mstore(eventDataPtr, orderHash)
                        // Write the fulfiller (i.e. the caller) next for receiver argument.
                        mstore(add(eventDataPtr, OrderFulfilled_fulfiller_offset), caller())
                        // Write the SpentItem and ReceivedItem array offsets (constants).
                        mstore(
                            // SpentItem array offset
                            add(eventDataPtr, OrderFulfilled_offer_head_offset),
                            OrderFulfilled_offer_body_offset
                        )
                        mstore(
                            // ReceivedItem array offset
                            add(eventDataPtr, OrderFulfilled_consideration_head_offset),
                            OrderFulfilled_consideration_body_offset
                        )
                        // Derive total data size including SpentItem and ReceivedItem data.
                        // SpentItem portion is already included in the baseSize constant,
                        // as there can only be one element in the array.
                        let dataSize := add(
                            OrderFulfilled_baseSize,
                            mul(
                                calldataload(BasicOrder_additionalRecipients_length_cdPtr),
                                ReceivedItem_size
                            )
                        )
                        // Emit OrderFulfilled log with three topics (the event signature
                        // as well as the two indexed arguments, the offerer and the zone).
                        log3(
                            // Supply the pointer for event data in memory.
                            eventDataPtr,
                            // Supply the size of event data in memory.
                            dataSize,
                            // Supply the OrderFulfilled event signature.
                            OrderFulfilled_selector,
                            // Supply the first topic (the offerer).
                            calldataload(BasicOrder_offerer_cdPtr),
                            // Supply the second topic (the zone).
                            calldataload(BasicOrder_zone_cdPtr)
                        )
                        // Restore the zero slot.
                        mstore(ZeroSlot, 0)
                        // Update the free memory pointer so that event data is persisted.
                        mstore(FreeMemoryPointerSlot, add(eventDataPtr, dataSize))
                    }
                    // Verify and update the status of the derived order.
                    _validateBasicOrderAndUpdateStatus(orderHash, parameters.signature);
                    // Return the derived order hash.
                    return orderHash;
                }
                /**
                 * @dev Internal function to transfer an individual ERC721 or ERC1155 item
                 *      from a given originator to a given recipient. The accumulator will
                 *      be bypassed, meaning that this function should be utilized in cases
                 *      where multiple item transfers can be accumulated into a single
                 *      conduit call. Sufficient approvals must be set, either on the
                 *      respective conduit or on this contract. Note that this function may
                 *      only be safely called as part of basic orders, as it assumes a
                 *      specific calldata encoding structure that must first be validated.
                 *
                 * @param itemType   The type of item to transfer, either ERC721 or ERC1155.
                 * @param conduitKey A bytes32 value indicating what corresponding conduit,
                 *                   if any, to source token approvals from. The zero hash
                 *                   signifies that no conduit should be used, with direct
                 *                   approvals set on this contract.
                 */
                function _transferIndividual721Or1155Item(
                    ItemType itemType,
                    bytes32 conduitKey
                ) internal {
                    // Retrieve token, from, identifier, and amount from calldata using
                    // fixed calldata offsets based on strict basic parameter encoding.
                    address token;
                    address from;
                    uint256 identifier;
                    uint256 amount;
                    assembly {
                        token := calldataload(BasicOrder_offerToken_cdPtr)
                        from := calldataload(BasicOrder_offerer_cdPtr)
                        identifier := calldataload(BasicOrder_offerIdentifier_cdPtr)
                        amount := calldataload(BasicOrder_offerAmount_cdPtr)
                    }
                    // Determine if the transfer is to be performed via a conduit.
                    if (conduitKey != bytes32(0)) {
                        // Use free memory pointer as calldata offset for the conduit call.
                        uint256 callDataOffset;
                        // Utilize assembly to place each argument in free memory.
                        assembly {
                            // Retrieve the free memory pointer and use it as the offset.
                            callDataOffset := mload(FreeMemoryPointerSlot)
                            // Write ConduitInterface.execute.selector to memory.
                            mstore(callDataOffset, Conduit_execute_signature)
                            // Write the offset to the ConduitTransfer array in memory.
                            mstore(
                                add(
                                    callDataOffset,
                                    Conduit_execute_ConduitTransfer_offset_ptr
                                ),
                                Conduit_execute_ConduitTransfer_ptr
                            )
                            // Write the length of the ConduitTransfer array to memory.
                            mstore(
                                add(
                                    callDataOffset,
                                    Conduit_execute_ConduitTransfer_length_ptr
                                ),
                                Conduit_execute_ConduitTransfer_length
                            )
                            // Write the item type to memory.
                            mstore(
                                add(callDataOffset, Conduit_execute_transferItemType_ptr),
                                itemType
                            )
                            // Write the token to memory.
                            mstore(
                                add(callDataOffset, Conduit_execute_transferToken_ptr),
                                token
                            )
                            // Write the transfer source to memory.
                            mstore(
                                add(callDataOffset, Conduit_execute_transferFrom_ptr),
                                from
                            )
                            // Write the transfer recipient (the caller) to memory.
                            mstore(
                                add(callDataOffset, Conduit_execute_transferTo_ptr),
                                caller()
                            )
                            // Write the token identifier to memory.
                            mstore(
                                add(callDataOffset, Conduit_execute_transferIdentifier_ptr),
                                identifier
                            )
                            // Write the transfer amount to memory.
                            mstore(
                                add(callDataOffset, Conduit_execute_transferAmount_ptr),
                                amount
                            )
                        }
                        // Perform the call to the conduit.
                        _callConduitUsingOffsets(
                            conduitKey,
                            callDataOffset,
                            OneConduitExecute_size
                        );
                    } else {
                        // Otherwise, determine whether it is an ERC721 or ERC1155 item.
                        if (itemType == ItemType.ERC721) {
                            // Ensure that exactly one 721 item is being transferred.
                            if (amount != 1) {
                                _revertInvalidERC721TransferAmount(amount);
                            }
                            // Perform transfer to caller via the token contract directly.
                            _performERC721Transfer(token, from, msg.sender, identifier);
                        } else {
                            // Perform transfer to caller via the token contract directly.
                            _performERC1155Transfer(
                                token,
                                from,
                                msg.sender,
                                identifier,
                                amount
                            );
                        }
                    }
                }
                /**
                 * @dev Internal function to transfer Ether (or other native tokens) to a
                 *      given recipient as part of basic order fulfillment. Note that
                 *      conduits are not utilized for native tokens as the transferred
                 *      amount must be provided as msg.value. Also note that this function
                 *      may only be safely called as part of basic orders, as it assumes a
                 *      specific calldata encoding structure that must first be validated.
                 */
                function _transferNativeTokensAndFinalize() internal {
                    // Put native token value supplied by the caller on the stack.
                    uint256 nativeTokensRemaining = msg.value;
                    // Retrieve consideration amount, offerer, and total size of additional
                    // recipients data from calldata using fixed offsets and place on stack.
                    uint256 amount;
                    address payable to;
                    uint256 totalAdditionalRecipientsDataSize;
                    assembly {
                        amount := calldataload(BasicOrder_considerationAmount_cdPtr)
                        to := calldataload(BasicOrder_offerer_cdPtr)
                        totalAdditionalRecipientsDataSize := shl(
                            AdditionalRecipient_size_shift,
                            calldataload(BasicOrder_additionalRecipients_length_cdPtr)
                        )
                    }
                    uint256 additionalRecipientAmount;
                    address payable recipient;
                    // Skip overflow check as for loop is indexed starting at zero.
                    unchecked {
                        // Iterate over additional recipient data by two-word element.
                        for (
                            uint256 i = 0;
                            i < totalAdditionalRecipientsDataSize;
                            i += AdditionalRecipient_size
                        ) {
                            assembly {
                                // Retrieve calldata pointer for additional recipient.
                                let additionalRecipientCdPtr := add(
                                    BasicOrder_additionalRecipients_data_cdPtr,
                                    i
                                )
                                additionalRecipientAmount := calldataload(
                                    additionalRecipientCdPtr
                                )
                                recipient := calldataload(
                                    add(OneWord, additionalRecipientCdPtr)
                                )
                            }
                            // Ensure that sufficient native tokens are available.
                            if (additionalRecipientAmount > nativeTokensRemaining) {
                                _revertInsufficientNativeTokensSupplied();
                            }
                            // Reduce native token value available. Skip underflow check as
                            // subtracted value is confirmed above as less than remaining.
                            nativeTokensRemaining -= additionalRecipientAmount;
                            // Transfer native tokens to the additional recipient.
                            _transferNativeTokens(recipient, additionalRecipientAmount);
                        }
                    }
                    // Ensure that sufficient native tokens are still available.
                    if (amount > nativeTokensRemaining) {
                        _revertInsufficientNativeTokensSupplied();
                    }
                    // Transfer native tokens to the offerer.
                    _transferNativeTokens(to, amount);
                    // If any native tokens remain after transfers, return to the caller.
                    if (nativeTokensRemaining > amount) {
                        // Skip underflow check as nativeTokensRemaining > amount.
                        unchecked {
                            // Transfer remaining native tokens to the caller.
                            _transferNativeTokens(
                                payable(msg.sender),
                                nativeTokensRemaining - amount
                            );
                        }
                    }
                }
                /**
                 * @dev Internal function to transfer ERC20 tokens to a given recipient as
                 *      part of basic order fulfillment. Note that this function may only be
                 *      safely called as part of basic orders, as it assumes a specific
                 *      calldata encoding structure that must first be validated. Also note
                 *      that basic order parameters are retrieved using fixed offsets, this
                 *      requires that strict basic order encoding has already been verified.
                 *
                 * @param fromOfferer A boolean indicating whether to decrement amount from
                 *                    the offered amount.
                 * @param accumulator An open-ended array that collects transfers to execute
                 *                    against a given conduit in a single call.
                 */
                function _transferERC20AndFinalize(
                    bool fromOfferer,
                    bytes memory accumulator
                ) internal {
                    // Declare from and to variables determined by fromOfferer value.
                    address from;
                    address to;
                    // Declare token and amount variables determined by fromOfferer value.
                    address token;
                    uint256 amount;
                    // Declare and check identifier variable within an isolated scope.
                    {
                        // Declare identifier variable determined by fromOfferer value.
                        uint256 identifier;
                        // Set ERC20 token transfer variables based on fromOfferer boolean.
                        if (fromOfferer) {
                            // Use offerer as from value, msg.sender as to value, and offer
                            // token, identifier, & amount values if token is from offerer.
                            assembly {
                                from := calldataload(BasicOrder_offerer_cdPtr)
                                to := caller()
                                token := calldataload(BasicOrder_offerToken_cdPtr)
                                identifier := calldataload(BasicOrder_offerIdentifier_cdPtr)
                                amount := calldataload(BasicOrder_offerAmount_cdPtr)
                            }
                        } else {
                            // Otherwise, use msg.sender as from value, offerer as to value,
                            // and consideration token, identifier, and amount values.
                            assembly {
                                from := caller()
                                to := calldataload(BasicOrder_offerer_cdPtr)
                                token := calldataload(BasicOrder_considerationToken_cdPtr)
                                identifier := calldataload(
                                    BasicOrder_considerationIdentifier_cdPtr
                                )
                                amount := calldataload(BasicOrder_considerationAmount_cdPtr)
                            }
                        }
                        // Ensure that no identifier is supplied.
                        if (identifier != 0) {
                            _revertUnusedItemParameters();
                        }
                    }
                    // Determine the appropriate conduit to utilize.
                    bytes32 conduitKey;
                    // Utilize assembly to derive conduit (if relevant) based on route.
                    assembly {
                        // Use offerer conduit if fromOfferer, fulfiller conduit otherwise.
                        conduitKey := calldataload(
                            sub(
                                BasicOrder_fulfillerConduit_cdPtr,
                                shl(OneWordShift, fromOfferer)
                            )
                        )
                    }
                    // Retrieve total size of additional recipients data and place on stack.
                    uint256 totalAdditionalRecipientsDataSize;
                    assembly {
                        totalAdditionalRecipientsDataSize := shl(
                            AdditionalRecipient_size_shift,
                            calldataload(BasicOrder_additionalRecipients_length_cdPtr)
                        )
                    }
                    uint256 additionalRecipientAmount;
                    address recipient;
                    // Iterate over each additional recipient.
                    for (uint256 i = 0; i < totalAdditionalRecipientsDataSize; ) {
                        assembly {
                            // Retrieve calldata pointer for additional recipient.
                            let additionalRecipientCdPtr := add(
                                BasicOrder_additionalRecipients_data_cdPtr,
                                i
                            )
                            additionalRecipientAmount := calldataload(
                                additionalRecipientCdPtr
                            )
                            recipient := calldataload(
                                add(OneWord, additionalRecipientCdPtr)
                            )
                        }
                        // Decrement the amount to transfer to fulfiller if indicated.
                        if (fromOfferer) {
                            amount -= additionalRecipientAmount;
                        }
                        // Transfer ERC20 tokens to additional recipient given approval.
                        _transferERC20(
                            token,
                            from,
                            recipient,
                            additionalRecipientAmount,
                            conduitKey,
                            accumulator
                        );
                        // Skip overflow check as for loop is indexed starting at zero.
                        unchecked {
                            i += AdditionalRecipient_size;
                        }
                    }
                    // Transfer ERC20 token amount (from account must have proper approval).
                    _transferERC20(token, from, to, amount, conduitKey, accumulator);
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.13;
            import { Side } from "../lib/ConsiderationEnums.sol";
            /**
             * @title CriteriaResolutionErrors
             * @author 0age
             * @notice CriteriaResolutionErrors contains all errors related to criteria
             *         resolution.
             */
            interface CriteriaResolutionErrors {
                /**
                 * @dev Revert with an error when providing a criteria resolver that refers
                 *      to an order that has not been supplied.
                 *
                 * @param side The side of the order that was not supplied.
                 */
                error OrderCriteriaResolverOutOfRange(Side side);
                /**
                 * @dev Revert with an error if an offer item still has unresolved criteria
                 *      after applying all criteria resolvers.
                 *
                 * @param orderIndex The index of the order that contains the offer item.
                 * @param offerIndex The index of the offer item that still has unresolved
                 *                   criteria.
                 */
                error UnresolvedOfferCriteria(uint256 orderIndex, uint256 offerIndex);
                /**
                 * @dev Revert with an error if a consideration item still has unresolved
                 *      criteria after applying all criteria resolvers.
                 *
                 * @param orderIndex         The index of the order that contains the
                 *                           consideration item.
                 * @param considerationIndex The index of the consideration item that still
                 *                           has unresolved criteria.
                 */
                error UnresolvedConsiderationCriteria(
                    uint256 orderIndex,
                    uint256 considerationIndex
                );
                /**
                 * @dev Revert with an error when providing a criteria resolver that refers
                 *      to an order with an offer item that has not been supplied.
                 */
                error OfferCriteriaResolverOutOfRange();
                /**
                 * @dev Revert with an error when providing a criteria resolver that refers
                 *      to an order with a consideration item that has not been supplied.
                 */
                error ConsiderationCriteriaResolverOutOfRange();
                /**
                 * @dev Revert with an error when providing a criteria resolver that refers
                 *      to an order with an item that does not expect a criteria to be
                 *      resolved.
                 */
                error CriteriaNotEnabledForItem();
                /**
                 * @dev Revert with an error when providing a criteria resolver that
                 *      contains an invalid proof with respect to the given item and
                 *      chosen identifier.
                 */
                error InvalidProof();
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.13;
            /**
             * @title AmountDerivationErrors
             * @author 0age
             * @notice AmountDerivationErrors contains errors related to amount derivation.
             */
            interface AmountDerivationErrors {
                /**
                 * @dev Revert with an error when attempting to apply a fraction as part of
                 *      a partial fill that does not divide the target amount cleanly.
                 */
                error InexactFraction();
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.17;
            import { OrderType } from "./ConsiderationEnums.sol";
            import {
                AdvancedOrder,
                ConsiderationItem,
                OfferItem,
                Order,
                OrderComponents,
                OrderParameters,
                OrderStatus
            } from "./ConsiderationStructs.sol";
            import {
                _revertBadFraction,
                _revertCannotCancelOrder,
                _revertConsiderationLengthNotEqualToTotalOriginal,
                _revertInvalidContractOrder,
                _revertPartialFillsNotEnabledForOrder
            } from "./ConsiderationErrors.sol";
            import { Executor } from "./Executor.sol";
            import { ZoneInteraction } from "./ZoneInteraction.sol";
            import { MemoryPointer } from "../helpers/PointerLibraries.sol";
            import {
                AdvancedOrder_denominator_offset,
                AdvancedOrder_numerator_offset,
                BasicOrder_offerer_cdPtr,
                Common_amount_offset,
                Common_endAmount_offset,
                Common_identifier_offset,
                Common_token_offset,
                ConsiderItem_recipient_offset,
                ContractOrder_orderHash_offerer_shift,
                MaxUint120,
                OrderStatus_filledDenominator_offset,
                OrderStatus_filledNumerator_offset,
                OrderStatus_ValidatedAndNotCancelled
            } from "./ConsiderationConstants.sol";
            import {
                Error_selector_offset,
                Panic_arithmetic,
                Panic_error_code_ptr,
                Panic_error_length,
                Panic_error_selector
            } from "./ConsiderationErrorConstants.sol";
            /**
             * @title OrderValidator
             * @author 0age
             * @notice OrderValidator contains functionality related to validating orders
             *         and updating their status.
             */
            contract OrderValidator is Executor, ZoneInteraction {
                // Track status of each order (validated, cancelled, and fraction filled).
                mapping(bytes32 => OrderStatus) private _orderStatus;
                // Track nonces for contract offerers.
                mapping(address => uint256) internal _contractNonces;
                /**
                 * @dev Derive and set hashes, reference chainId, and associated domain
                 *      separator during deployment.
                 *
                 * @param conduitController A contract that deploys conduits, or proxies
                 *                          that may optionally be used to transfer approved
                 *                          ERC20/721/1155 tokens.
                 */
                constructor(address conduitController) Executor(conduitController) {}
                /**
                 * @dev Internal function to verify and update the status of a basic order.
                 *      Note that this function may only be safely called as part of basic
                 *      orders, as it assumes a specific calldata encoding structure that
                 *      must first be validated.
                 *
                 * @param orderHash The hash of the order.
                 * @param signature A signature from the offerer indicating that the order
                 *                  has been approved.
                 */
                function _validateBasicOrderAndUpdateStatus(
                    bytes32 orderHash,
                    bytes calldata signature
                ) internal {
                    // Retrieve offerer directly using fixed calldata offset based on strict
                    // basic parameter encoding.
                    address offerer;
                    assembly {
                        offerer := calldataload(BasicOrder_offerer_cdPtr)
                    }
                    // Retrieve the order status for the given order hash.
                    OrderStatus storage orderStatus = _orderStatus[orderHash];
                    // Ensure order is fillable and is not cancelled.
                    _verifyOrderStatus(
                        orderHash,
                        orderStatus,
                        true, // Only allow unused orders when fulfilling basic orders.
                        true // Signifies to revert if the order is invalid.
                    );
                    // If the order is not already validated, verify the supplied signature.
                    if (!orderStatus.isValidated) {
                        _verifySignature(offerer, orderHash, signature);
                    }
                    // Update order status as fully filled, packing struct values.
                    orderStatus.isValidated = true;
                    orderStatus.isCancelled = false;
                    orderStatus.numerator = 1;
                    orderStatus.denominator = 1;
                }
                /**
                 * @dev Internal function to validate an order, determine what portion to
                 *      fill, and update its status. The desired fill amount is supplied as
                 *      a fraction, as is the returned amount to fill.
                 *
                 * @param advancedOrder     The order to fulfill as well as the fraction to
                 *                          fill. Note that all offer and consideration
                 *                          amounts must divide with no remainder in order
                 *                          for a partial fill to be valid.
                 * @param revertOnInvalid   A boolean indicating whether to revert if the
                 *                          order is invalid due to the time or status.
                 *
                 * @return orderHash      The order hash.
                 * @return numerator      A value indicating the portion of the order that
                 *                        will be filled.
                 * @return denominator    A value indicating the total size of the order.
                 */
                function _validateOrderAndUpdateStatus(
                    AdvancedOrder memory advancedOrder,
                    bool revertOnInvalid
                )
                    internal
                    returns (bytes32 orderHash, uint256 numerator, uint256 denominator)
                {
                    // Retrieve the parameters for the order.
                    OrderParameters memory orderParameters = advancedOrder.parameters;
                    // Ensure current timestamp falls between order start time and end time.
                    if (
                        !_verifyTime(
                            orderParameters.startTime,
                            orderParameters.endTime,
                            revertOnInvalid
                        )
                    ) {
                        // Assuming an invalid time and no revert, return zeroed out values.
                        return (bytes32(0), 0, 0);
                    }
                    // Read numerator and denominator from memory and place on the stack.
                    // Note that overflowed values are masked.
                    assembly {
                        numerator := and(
                            mload(add(advancedOrder, AdvancedOrder_numerator_offset)),
                            MaxUint120
                        )
                        denominator := and(
                            mload(add(advancedOrder, AdvancedOrder_denominator_offset)),
                            MaxUint120
                        )
                    }
                    // Declare variable for tracking the validity of the supplied fraction.
                    bool invalidFraction;
                    // If the order is a contract order, return the generated order.
                    if (orderParameters.orderType == OrderType.CONTRACT) {
                        // Ensure that the numerator and denominator are both equal to 1.
                        assembly {
                            // (1 ^ nd =/= 0) => (nd =/= 1) => (n =/= 1) || (d =/= 1)
                            // It's important that the values are 120-bit masked before
                            // multiplication is applied. Otherwise, the last implication
                            // above is not correct (mod 2^256).
                            invalidFraction := xor(mul(numerator, denominator), 1)
                        }
                        // Revert if the supplied numerator and denominator are not valid.
                        if (invalidFraction) {
                            _revertBadFraction();
                        }
                        // Return the generated order based on the order params and the
                        // provided extra data. If revertOnInvalid is true, the function
                        // will revert if the input is invalid.
                        return
                            _getGeneratedOrder(
                                orderParameters,
                                advancedOrder.extraData,
                                revertOnInvalid
                            );
                    }
                    // Ensure numerator does not exceed denominator and is not zero.
                    assembly {
                        invalidFraction := or(gt(numerator, denominator), iszero(numerator))
                    }
                    // Revert if the supplied numerator and denominator are not valid.
                    if (invalidFraction) {
                        _revertBadFraction();
                    }
                    // If attempting partial fill (n < d) check order type & ensure support.
                    if (
                        _doesNotSupportPartialFills(
                            orderParameters.orderType,
                            numerator,
                            denominator
                        )
                    ) {
                        // Revert if partial fill was attempted on an unsupported order.
                        _revertPartialFillsNotEnabledForOrder();
                    }
                    // Retrieve current counter & use it w/ parameters to derive order hash.
                    orderHash = _assertConsiderationLengthAndGetOrderHash(orderParameters);
                    // Retrieve the order status using the derived order hash.
                    OrderStatus storage orderStatus = _orderStatus[orderHash];
                    // Ensure order is fillable and is not cancelled.
                    if (
                        !_verifyOrderStatus(
                            orderHash,
                            orderStatus,
                            false, // Allow partially used orders to be filled.
                            revertOnInvalid
                        )
                    ) {
                        // Assuming an invalid order status and no revert, return zero fill.
                        return (orderHash, 0, 0);
                    }
                    // If the order is not already validated, verify the supplied signature.
                    if (!orderStatus.isValidated) {
                        _verifySignature(
                            orderParameters.offerer,
                            orderHash,
                            advancedOrder.signature
                        );
                    }
                    // Utilize assembly to determine the fraction to fill and update status.
                    assembly {
                        let orderStatusSlot := orderStatus.slot
                        // Read filled amount as numerator and denominator and put on stack.
                        let filledNumerator := sload(orderStatusSlot)
                        let filledDenominator := shr(
                            OrderStatus_filledDenominator_offset,
                            filledNumerator
                        )
                        // "Loop" until the appropriate fill fraction has been determined.
                        for { } 1 { } {
                            // If no portion of the order has been filled yet...
                            if iszero(filledDenominator) {
                                // fill the full supplied fraction.
                                filledNumerator := numerator
                                // Exit the "loop" early.
                                break
                            }
                            // Shift and mask to calculate the current filled numerator.
                            filledNumerator := and(
                                shr(OrderStatus_filledNumerator_offset, filledNumerator),
                                MaxUint120
                            )
                            // If denominator of 1 supplied, fill entire remaining amount.
                            if eq(denominator, 1) {
                                // Set the amount to fill to the remaining amount.
                                numerator := sub(filledDenominator, filledNumerator)
                                // Set the fill size to the current size.
                                denominator := filledDenominator
                                // Set the filled amount to the current size.
                                filledNumerator := filledDenominator
                                // Exit the "loop" early.
                                break
                            }
                            // If supplied denominator is equal to the current one:
                            if eq(denominator, filledDenominator) {
                                // Increment the filled numerator by the new numerator.
                                filledNumerator := add(numerator, filledNumerator)
                                // Once adjusted, if current + supplied numerator exceeds
                                // the denominator:
                                let carry := mul(
                                    sub(filledNumerator, denominator),
                                    gt(filledNumerator, denominator)
                                )
                                // reduce the amount to fill by the excess.
                                numerator := sub(numerator, carry)
                                // Reduce the filled amount by the excess as well.
                                filledNumerator := sub(filledNumerator, carry)
                                // Exit the "loop" early.
                                break
                            }
                            // Otherwise, if supplied denominator differs from current one:
                            // Scale the filled amount up by the supplied size.
                            filledNumerator := mul(filledNumerator, denominator)
                            // Scale the supplied amount and size up by the current size.
                            numerator := mul(numerator, filledDenominator)
                            denominator := mul(denominator, filledDenominator)
                            // Increment the filled numerator by the new numerator.
                            filledNumerator := add(numerator, filledNumerator)
                            // Once adjusted, if current + supplied numerator exceeds
                            // denominator:
                            let carry := mul(
                                sub(filledNumerator, denominator),
                                gt(filledNumerator, denominator)
                            )
                            // reduce the amount to fill by the excess.
                            numerator := sub(numerator, carry)
                            // Reduce the filled amount by the excess as well.
                            filledNumerator := sub(filledNumerator, carry)
                            // Check filledNumerator and denominator for uint120 overflow.
                            if or(
                                gt(filledNumerator, MaxUint120),
                                gt(denominator, MaxUint120)
                            ) {
                                // Derive greatest common divisor using euclidean algorithm.
                                function gcd(_a, _b) -> out {
                                    // "Loop" until only one non-zero value remains.
                                    for { } _b { } {
                                        // Assign the second value to a temporary variable.
                                        let _c := _b
                                        // Derive the modulus of the two values.
                                        _b := mod(_a, _c)
                                        // Set the first value to the temporary value.
                                        _a := _c
                                    }
                                    // Return the remaining non-zero value.
                                    out := _a
                                }
                                // Determine the amount to scale down the fill fractions.
                                let scaleDown := gcd(
                                    numerator,
                                    gcd(filledNumerator, denominator)
                                )
                                // Ensure that the divisor is at least one.
                                let safeScaleDown := add(scaleDown, iszero(scaleDown))
                                // Scale all fractional values down by gcd.
                                numerator := div(numerator, safeScaleDown)
                                filledNumerator := div(filledNumerator, safeScaleDown)
                                denominator := div(denominator, safeScaleDown)
                                // Perform the overflow check a second time.
                                if or(
                                    gt(filledNumerator, MaxUint120),
                                    gt(denominator, MaxUint120)
                                ) {
                                    // Store the Panic error signature.
                                    mstore(0, Panic_error_selector)
                                    // Store the arithmetic (0x11) panic code.
                                    mstore(Panic_error_code_ptr, Panic_arithmetic)
                                    // revert(abi.encodeWithSignature(
                                    //     "Panic(uint256)", 0x11
                                    // ))
                                    revert(Error_selector_offset, Panic_error_length)
                                }
                            }
                            // Exit the "loop" now that all evaluation is complete.
                            break
                        }
                        // Update order status and fill amount, packing struct values.
                        // [denominator: 15 bytes] [numerator: 15 bytes]
                        // [isCancelled: 1 byte] [isValidated: 1 byte]
                        sstore(
                            orderStatusSlot,
                            or(
                                OrderStatus_ValidatedAndNotCancelled,
                                or(
                                    shl(
                                        OrderStatus_filledNumerator_offset,
                                        filledNumerator
                                    ),
                                    shl(OrderStatus_filledDenominator_offset, denominator)
                                )
                            )
                        )
                    }
                }
                /**
                 * @dev Internal pure function to check the compatibility of two offer
                 *      or consideration items for contract orders.  Note that the itemType
                 *      and identifier are reset in cases where criteria = 0 (collection-
                 *      wide offers), which means that a contract offerer has full latitude
                 *      to choose any identifier it wants mid-flight, in contrast to the
                 *      normal behavior, where the fulfiller can pick which identifier to
                 *      receive by providing a CriteriaResolver.
                 *
                 * @param originalItem The original offer or consideration item.
                 * @param newItem      The new offer or consideration item.
                 *
                 * @return isInvalid Error buffer indicating if items are incompatible.
                 */
                function _compareItems(
                    MemoryPointer originalItem,
                    MemoryPointer newItem
                ) internal pure returns (uint256 isInvalid) {
                    assembly {
                        let itemType := mload(originalItem)
                        let identifier := mload(add(originalItem, Common_identifier_offset))
                        // Set returned identifier for criteria-based items w/ criteria = 0.
                        if and(gt(itemType, 3), iszero(identifier)) {
                            // replace item type
                            itemType := sub(3, eq(itemType, 4))
                            identifier := mload(add(newItem, Common_identifier_offset))
                        }
                        let originalAmount := mload(add(originalItem, Common_amount_offset))
                        let newAmount := mload(add(newItem, Common_amount_offset))
                        isInvalid := iszero(
                            and(
                                // originalItem.token == newItem.token &&
                                // originalItem.itemType == newItem.itemType
                                and(
                                    eq(
                                        mload(add(originalItem, Common_token_offset)),
                                        mload(add(newItem, Common_token_offset))
                                    ),
                                    eq(itemType, mload(newItem))
                                ),
                                // originalItem.identifier == newItem.identifier &&
                                // originalItem.startAmount == originalItem.endAmount
                                and(
                                    eq(
                                        identifier,
                                        mload(add(newItem, Common_identifier_offset))
                                    ),
                                    eq(
                                        originalAmount,
                                        mload(add(originalItem, Common_endAmount_offset))
                                    )
                                )
                            )
                        )
                    }
                }
                /**
                 * @dev Internal pure function to check the compatibility of two recipients
                 *      on consideration items for contract orders. This check is skipped if
                 *      no recipient is originally supplied.
                 *
                 * @param originalRecipient The original consideration item recipient.
                 * @param newRecipient      The new consideration item recipient.
                 *
                 * @return isInvalid Error buffer indicating if recipients are incompatible.
                 */
                function _checkRecipients(
                    address originalRecipient,
                    address newRecipient
                ) internal pure returns (uint256 isInvalid) {
                    assembly {
                        isInvalid := iszero(
                            or(
                                iszero(originalRecipient),
                                eq(newRecipient, originalRecipient)
                            )
                        )
                    }
                }
                /**
                 * @dev Internal function to generate a contract order. When a
                 *      collection-wide criteria-based item (criteria = 0) is provided as an
                 *      input to a contract order, the contract offerer has full latitude to
                 *      choose any identifier it wants mid-flight, which differs from the
                 *      usual behavior.  For regular criteria-based orders with
                 *      identifierOrCriteria = 0, the fulfiller can pick which identifier to
                 *      receive by providing a CriteriaResolver. For contract offers with
                 *      identifierOrCriteria = 0, Seaport does not expect a corresponding
                 *      CriteriaResolver, and will revert if one is provided.
                 *
                 * @param orderParameters The parameters for the order.
                 * @param context         The context for generating the order.
                 * @param revertOnInvalid Whether to revert on invalid input.
                 *
                 * @return orderHash   The order hash.
                 * @return numerator   The numerator.
                 * @return denominator The denominator.
                 */
                function _getGeneratedOrder(
                    OrderParameters memory orderParameters,
                    bytes memory context,
                    bool revertOnInvalid
                )
                    internal
                    returns (bytes32 orderHash, uint256 numerator, uint256 denominator)
                {
                    // Ensure that consideration array length is equal to the total original
                    // consideration items value.
                    if (
                        orderParameters.consideration.length !=
                        orderParameters.totalOriginalConsiderationItems
                    ) {
                        _revertConsiderationLengthNotEqualToTotalOriginal();
                    }
                    {
                        address offerer = orderParameters.offerer;
                        bool success;
                        (MemoryPointer cdPtr, uint256 size) = _encodeGenerateOrder(
                            orderParameters,
                            context
                        );
                        assembly {
                            success := call(gas(), offerer, 0, cdPtr, size, 0, 0)
                        }
                        {
                            // Note: overflow impossible; nonce can't increment that high.
                            uint256 contractNonce;
                            unchecked {
                                // Note: nonce will be incremented even for skipped orders,
                                // and  even if generateOrder's return data does not satisfy
                                // all the constraints. This is the case when errorBuffer
                                // != 0 and revertOnInvalid == false.
                                contractNonce = _contractNonces[offerer]++;
                            }
                            assembly {
                                // Shift offerer address up 96 bytes and combine with nonce.
                                orderHash := xor(
                                    contractNonce,
                                    shl(ContractOrder_orderHash_offerer_shift, offerer)
                                )
                            }
                        }
                        // Revert or skip if the call to generate the contract order failed.
                        if (!success) {
                            return _revertOrReturnEmpty(revertOnInvalid, orderHash);
                        }
                    }
                    // From this point onward, do not allow for skipping orders as the
                    // contract offerer may have modified state in expectation of any named
                    // consideration items being sent to their designated recipients.
                    // Decode the returned contract order and/or update the error buffer.
                    (
                        uint256 errorBuffer,
                        OfferItem[] memory offer,
                        ConsiderationItem[] memory consideration
                    ) = _convertGetGeneratedOrderResult(_decodeGenerateOrderReturndata)();
                    // Revert if the returndata could not be decoded correctly.
                    if (errorBuffer != 0) {
                        _revertInvalidContractOrder(orderHash);
                    }
                    {
                        // Designate lengths.
                        uint256 originalOfferLength = orderParameters.offer.length;
                        uint256 newOfferLength = offer.length;
                        // Explicitly specified offer items cannot be removed.
                        if (originalOfferLength > newOfferLength) {
                            _revertInvalidContractOrder(orderHash);
                        }
                        // Iterate over each specified offer (e.g. minimumReceived) item.
                        for (uint256 i = 0; i < originalOfferLength; ) {
                            // Retrieve the pointer to the originally supplied item.
                            MemoryPointer mPtrOriginal = orderParameters
                                .offer[i]
                                .toMemoryPointer();
                            // Retrieve the pointer to the newly returned item.
                            MemoryPointer mPtrNew = offer[i].toMemoryPointer();
                            // Compare the items and update the error buffer accordingly.
                            errorBuffer |=
                                _cast(
                                    mPtrOriginal
                                        .offset(Common_amount_offset)
                                        .readUint256() >
                                        mPtrNew.offset(Common_amount_offset).readUint256()
                                ) |
                                _compareItems(mPtrOriginal, mPtrNew);
                            // Increment the array (cannot overflow as index starts at 0).
                            unchecked {
                                ++i;
                            }
                        }
                        // Assign the returned offer item in place of the original item.
                        orderParameters.offer = offer;
                    }
                    {
                        // Designate lengths & memory locations.
                        ConsiderationItem[] memory originalConsiderationArray = (
                            orderParameters.consideration
                        );
                        uint256 newConsiderationLength = consideration.length;
                        // New consideration items cannot be created.
                        if (newConsiderationLength > originalConsiderationArray.length) {
                            _revertInvalidContractOrder(orderHash);
                        }
                        // Iterate over returned consideration & do not exceed maximumSpent.
                        for (uint256 i = 0; i < newConsiderationLength; ) {
                            // Retrieve the pointer to the originally supplied item.
                            MemoryPointer mPtrOriginal = originalConsiderationArray[i]
                                .toMemoryPointer();
                            // Retrieve the pointer to the newly returned item.
                            MemoryPointer mPtrNew = consideration[i].toMemoryPointer();
                            // Compare the items and update the error buffer accordingly
                            // and ensure that the recipients are equal when provided.
                            errorBuffer |=
                                _cast(
                                    mPtrNew.offset(Common_amount_offset).readUint256() >
                                        mPtrOriginal
                                            .offset(Common_amount_offset)
                                            .readUint256()
                                ) |
                                _compareItems(mPtrOriginal, mPtrNew) |
                                _checkRecipients(
                                    mPtrOriginal
                                        .offset(ConsiderItem_recipient_offset)
                                        .readAddress(),
                                    mPtrNew
                                        .offset(ConsiderItem_recipient_offset)
                                        .readAddress()
                                );
                            // Increment the array (cannot overflow as index starts at 0).
                            unchecked {
                                ++i;
                            }
                        }
                        // Assign returned consideration item in place of the original item.
                        orderParameters.consideration = consideration;
                    }
                    // Revert if any item comparison failed.
                    if (errorBuffer != 0) {
                        _revertInvalidContractOrder(orderHash);
                    }
                    // Return order hash and full fill amount (numerator & denominator = 1).
                    return (orderHash, 1, 1);
                }
                /**
                 * @dev Internal function to cancel an arbitrary number of orders. Note that
                 *      only the offerer or the zone of a given order may cancel it. Callers
                 *      should ensure that the intended order was cancelled by calling
                 *      `getOrderStatus` and confirming that `isCancelled` returns `true`.
                 *      Also note that contract orders are not cancellable.
                 *
                 * @param orders The orders to cancel.
                 *
                 * @return cancelled A boolean indicating whether the supplied orders were
                 *                   successfully cancelled.
                 */
                function _cancel(
                    OrderComponents[] calldata orders
                ) internal returns (bool cancelled) {
                    // Ensure that the reentrancy guard is not currently set.
                    _assertNonReentrant();
                    // Declare variables outside of the loop.
                    OrderStatus storage orderStatus;
                    // Declare a variable for tracking invariants in the loop.
                    bool anyInvalidCallerOrContractOrder;
                    // Skip overflow check as for loop is indexed starting at zero.
                    unchecked {
                        // Read length of the orders array from memory and place on stack.
                        uint256 totalOrders = orders.length;
                        // Iterate over each order.
                        for (uint256 i = 0; i < totalOrders; ) {
                            // Retrieve the order.
                            OrderComponents calldata order = orders[i];
                            address offerer = order.offerer;
                            address zone = order.zone;
                            OrderType orderType = order.orderType;
                            assembly {
                                // If caller is neither the offerer nor zone, or a contract
                                // order is present, flag anyInvalidCallerOrContractOrder.
                                anyInvalidCallerOrContractOrder := or(
                                    anyInvalidCallerOrContractOrder,
                                    // orderType == CONTRACT ||
                                    // !(caller == offerer || caller == zone)
                                    or(
                                        eq(orderType, 4),
                                        iszero(
                                            or(eq(caller(), offerer), eq(caller(), zone))
                                        )
                                    )
                                )
                            }
                            bytes32 orderHash = _deriveOrderHash(
                                _toOrderParametersReturnType(
                                    _decodeOrderComponentsAsOrderParameters
                                )(order.toCalldataPointer()),
                                order.counter
                            );
                            // Retrieve the order status using the derived order hash.
                            orderStatus = _orderStatus[orderHash];
                            // Update the order status as not valid and cancelled.
                            orderStatus.isValidated = false;
                            orderStatus.isCancelled = true;
                            // Emit an event signifying that the order has been cancelled.
                            emit OrderCancelled(orderHash, offerer, zone);
                            // Increment counter inside body of loop for gas efficiency.
                            ++i;
                        }
                    }
                    if (anyInvalidCallerOrContractOrder) {
                        _revertCannotCancelOrder();
                    }
                    // Return a boolean indicating that orders were successfully cancelled.
                    cancelled = true;
                }
                /**
                 * @dev Internal function to validate an arbitrary number of orders, thereby
                 *      registering their signatures as valid and allowing the fulfiller to
                 *      skip signature verification on fulfillment. Note that validated
                 *      orders may still be unfulfillable due to invalid item amounts or
                 *      other factors; callers should determine whether validated orders are
                 *      fulfillable by simulating the fulfillment call prior to execution.
                 *      Also note that anyone can validate a signed order, but only the
                 *      offerer can validate an order without supplying a signature.
                 *
                 * @param orders The orders to validate.
                 *
                 * @return validated A boolean indicating whether the supplied orders were
                 *                   successfully validated.
                 */
                function _validate(
                    Order[] memory orders
                ) internal returns (bool validated) {
                    // Ensure that the reentrancy guard is not currently set.
                    _assertNonReentrant();
                    // Declare variables outside of the loop.
                    OrderStatus storage orderStatus;
                    bytes32 orderHash;
                    address offerer;
                    // Skip overflow check as for loop is indexed starting at zero.
                    unchecked {
                        // Read length of the orders array from memory and place on stack.
                        uint256 totalOrders = orders.length;
                        // Iterate over each order.
                        for (uint256 i = 0; i < totalOrders; ++i) {
                            // Retrieve the order.
                            Order memory order = orders[i];
                            // Retrieve the order parameters.
                            OrderParameters memory orderParameters = order.parameters;
                            // Skip contract orders.
                            if (orderParameters.orderType == OrderType.CONTRACT) {
                                continue;
                            }
                            // Move offerer from memory to the stack.
                            offerer = orderParameters.offerer;
                            // Get current counter & use it w/ params to derive order hash.
                            orderHash = _assertConsiderationLengthAndGetOrderHash(
                                orderParameters
                            );
                            // Retrieve the order status using the derived order hash.
                            orderStatus = _orderStatus[orderHash];
                            // Ensure order is fillable and retrieve the filled amount.
                            _verifyOrderStatus(
                                orderHash,
                                orderStatus,
                                false, // Signifies that partially filled orders are valid.
                                true // Signifies to revert if the order is invalid.
                            );
                            // If the order has not already been validated...
                            if (!orderStatus.isValidated) {
                                // Ensure that consideration array length is equal to the
                                // total original consideration items value.
                                if (
                                    orderParameters.consideration.length !=
                                    orderParameters.totalOriginalConsiderationItems
                                ) {
                                    _revertConsiderationLengthNotEqualToTotalOriginal();
                                }
                                // Verify the supplied signature.
                                _verifySignature(offerer, orderHash, order.signature);
                                // Update order status to mark the order as valid.
                                orderStatus.isValidated = true;
                                // Emit an event signifying the order has been validated.
                                emit OrderValidated(orderHash, orderParameters);
                            }
                        }
                    }
                    // Return a boolean indicating that orders were successfully validated.
                    validated = true;
                }
                /**
                 * @dev Internal view function to retrieve the status of a given order by
                 *      hash, including whether the order has been cancelled or validated
                 *      and the fraction of the order that has been filled.
                 *
                 * @param orderHash The order hash in question.
                 *
                 * @return isValidated A boolean indicating whether the order in question
                 *                     has been validated (i.e. previously approved or
                 *                     partially filled).
                 * @return isCancelled A boolean indicating whether the order in question
                 *                     has been cancelled.
                 * @return totalFilled The total portion of the order that has been filled
                 *                     (i.e. the "numerator").
                 * @return totalSize   The total size of the order that is either filled or
                 *                     unfilled (i.e. the "denominator").
                 */
                function _getOrderStatus(
                    bytes32 orderHash
                )
                    internal
                    view
                    returns (
                        bool isValidated,
                        bool isCancelled,
                        uint256 totalFilled,
                        uint256 totalSize
                    )
                {
                    // Retrieve the order status using the order hash.
                    OrderStatus storage orderStatus = _orderStatus[orderHash];
                    // Return the fields on the order status.
                    return (
                        orderStatus.isValidated,
                        orderStatus.isCancelled,
                        orderStatus.numerator,
                        orderStatus.denominator
                    );
                }
                /**
                 * @dev Internal pure function to either revert or return an empty tuple
                 *      depending on the value of `revertOnInvalid`.
                 *
                 * @param revertOnInvalid   Whether to revert on invalid input.
                 * @param contractOrderHash The contract order hash.
                 *
                 * @return orderHash   The order hash.
                 * @return numerator   The numerator.
                 * @return denominator The denominator.
                 */
                function _revertOrReturnEmpty(
                    bool revertOnInvalid,
                    bytes32 contractOrderHash
                )
                    internal
                    pure
                    returns (bytes32 orderHash, uint256 numerator, uint256 denominator)
                {
                    if (revertOnInvalid) {
                        _revertInvalidContractOrder(contractOrderHash);
                    }
                    return (contractOrderHash, 0, 0);
                }
                /**
                 * @dev Internal pure function to check whether a given order type indicates
                 *      that partial fills are not supported (e.g. only "full fills" are
                 *      allowed for the order in question).
                 *
                 * @param orderType   The order type in question.
                 * @param numerator   The numerator in question.
                 * @param denominator The denominator in question.
                 *
                 * @return isFullOrder A boolean indicating whether the order type only
                 *                     supports full fills.
                 */
                function _doesNotSupportPartialFills(
                    OrderType orderType,
                    uint256 numerator,
                    uint256 denominator
                ) internal pure returns (bool isFullOrder) {
                    // The "full" order types are even, while "partial" order types are odd.
                    // Bitwise and by 1 is equivalent to modulo by 2, but 2 gas cheaper. The
                    // check is only necessary if numerator is less than denominator.
                    assembly {
                        // Equivalent to `uint256(orderType) & 1 == 0`.
                        isFullOrder := and(
                            lt(numerator, denominator),
                            iszero(and(orderType, 1))
                        )
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.17;
            import { ConduitInterface } from "../interfaces/ConduitInterface.sol";
            import { ConduitItemType } from "../conduit/lib/ConduitEnums.sol";
            import { ItemType } from "./ConsiderationEnums.sol";
            import { ReceivedItem } from "./ConsiderationStructs.sol";
            import { Verifiers } from "./Verifiers.sol";
            import { TokenTransferrer } from "./TokenTransferrer.sol";
            import {
                Accumulator_array_length_ptr,
                Accumulator_array_offset_ptr,
                Accumulator_array_offset,
                Accumulator_conduitKey_ptr,
                Accumulator_itemSizeOffsetDifference,
                Accumulator_selector_ptr,
                AccumulatorArmed,
                AccumulatorDisarmed,
                Conduit_transferItem_amount_ptr,
                Conduit_transferItem_from_ptr,
                Conduit_transferItem_identifier_ptr,
                Conduit_transferItem_size,
                Conduit_transferItem_to_ptr,
                Conduit_transferItem_token_ptr,
                FreeMemoryPointerSlot,
                OneWord,
                TwoWords
            } from "./ConsiderationConstants.sol";
            import {
                Error_selector_offset,
                NativeTokenTransferGenericFailure_error_account_ptr,
                NativeTokenTransferGenericFailure_error_amount_ptr,
                NativeTokenTransferGenericFailure_error_length,
                NativeTokenTransferGenericFailure_error_selector
            } from "./ConsiderationErrorConstants.sol";
            import {
                _revertInvalidCallToConduit,
                _revertInvalidConduit,
                _revertInvalidERC721TransferAmount,
                _revertUnusedItemParameters
            } from "./ConsiderationErrors.sol";
            /**
             * @title Executor
             * @author 0age
             * @notice Executor contains functions related to processing executions (i.e.
             *         transferring items, either directly or via conduits).
             */
            contract Executor is Verifiers, TokenTransferrer {
                /**
                 * @dev Derive and set hashes, reference chainId, and associated domain
                 *      separator during deployment.
                 *
                 * @param conduitController A contract that deploys conduits, or proxies
                 *                          that may optionally be used to transfer approved
                 *                          ERC20/721/1155 tokens.
                 */
                constructor(address conduitController) Verifiers(conduitController) {}
                /**
                 * @dev Internal function to transfer a given item, either directly or via
                 *      a corresponding conduit.
                 *
                 * @param item        The item to transfer, including an amount and a
                 *                    recipient.
                 * @param from        The account supplying the item.
                 * @param conduitKey  A bytes32 value indicating what corresponding conduit,
                 *                    if any, to source token approvals from. The zero hash
                 *                    signifies that no conduit should be used, with direct
                 *                    approvals set on this contract.
                 * @param accumulator An open-ended array that collects transfers to execute
                 *                    against a given conduit in a single call.
                 */
                function _transfer(
                    ReceivedItem memory item,
                    address from,
                    bytes32 conduitKey,
                    bytes memory accumulator
                ) internal {
                    // If the item type indicates Ether or a native token...
                    if (item.itemType == ItemType.NATIVE) {
                        // Ensure neither the token nor the identifier parameters are set.
                        if ((uint160(item.token) | item.identifier) != 0) {
                            _revertUnusedItemParameters();
                        }
                        // transfer the native tokens to the recipient.
                        _transferNativeTokens(item.recipient, item.amount);
                    } else if (item.itemType == ItemType.ERC20) {
                        // Ensure that no identifier is supplied.
                        if (item.identifier != 0) {
                            _revertUnusedItemParameters();
                        }
                        // Transfer ERC20 tokens from the source to the recipient.
                        _transferERC20(
                            item.token,
                            from,
                            item.recipient,
                            item.amount,
                            conduitKey,
                            accumulator
                        );
                    } else if (item.itemType == ItemType.ERC721) {
                        // Transfer ERC721 token from the source to the recipient.
                        _transferERC721(
                            item.token,
                            from,
                            item.recipient,
                            item.identifier,
                            item.amount,
                            conduitKey,
                            accumulator
                        );
                    } else {
                        // Transfer ERC1155 token from the source to the recipient.
                        _transferERC1155(
                            item.token,
                            from,
                            item.recipient,
                            item.identifier,
                            item.amount,
                            conduitKey,
                            accumulator
                        );
                    }
                }
                /**
                 * @dev Internal function to transfer Ether or other native tokens to a
                 *      given recipient.
                 *
                 * @param to     The recipient of the transfer.
                 * @param amount The amount to transfer.
                 */
                function _transferNativeTokens(
                    address payable to,
                    uint256 amount
                ) internal {
                    // Ensure that the supplied amount is non-zero.
                    _assertNonZeroAmount(amount);
                    // Declare a variable indicating whether the call was successful or not.
                    bool success;
                    assembly {
                        // Transfer the native token and store if it succeeded or not.
                        success := call(gas(), to, amount, 0, 0, 0, 0)
                    }
                    // If the call fails...
                    if (!success) {
                        // Revert and pass the revert reason along if one was returned.
                        _revertWithReasonIfOneIsReturned();
                        // Otherwise, revert with a generic error message.
                        assembly {
                            // Store left-padded selector with push4, mem[28:32] = selector
                            mstore(0, NativeTokenTransferGenericFailure_error_selector)
                            // Write `to` and `amount` arguments.
                            mstore(NativeTokenTransferGenericFailure_error_account_ptr, to)
                            mstore(
                                NativeTokenTransferGenericFailure_error_amount_ptr,
                                amount
                            )
                            // revert(abi.encodeWithSignature(
                            //     "NativeTokenTransferGenericFailure(address,uint256)",
                            //     to,
                            //     amount
                            // ))
                            revert(
                                Error_selector_offset,
                                NativeTokenTransferGenericFailure_error_length
                            )
                        }
                    }
                }
                /**
                 * @dev Internal function to transfer ERC20 tokens from a given originator
                 *      to a given recipient using a given conduit if applicable. Sufficient
                 *      approvals must be set on this contract or on a respective conduit.
                 *
                 * @param token       The ERC20 token to transfer.
                 * @param from        The originator of the transfer.
                 * @param to          The recipient of the transfer.
                 * @param amount      The amount to transfer.
                 * @param conduitKey  A bytes32 value indicating what corresponding conduit,
                 *                    if any, to source token approvals from. The zero hash
                 *                    signifies that no conduit should be used, with direct
                 *                    approvals set on this contract.
                 * @param accumulator An open-ended array that collects transfers to execute
                 *                    against a given conduit in a single call.
                 */
                function _transferERC20(
                    address token,
                    address from,
                    address to,
                    uint256 amount,
                    bytes32 conduitKey,
                    bytes memory accumulator
                ) internal {
                    // Ensure that the supplied amount is non-zero.
                    _assertNonZeroAmount(amount);
                    // Trigger accumulated transfers if the conduits differ.
                    _triggerIfArmedAndNotAccumulatable(accumulator, conduitKey);
                    // If no conduit has been specified...
                    if (conduitKey == bytes32(0)) {
                        // Perform the token transfer directly.
                        _performERC20Transfer(token, from, to, amount);
                    } else {
                        // Insert the call to the conduit into the accumulator.
                        _insert(
                            conduitKey,
                            accumulator,
                            ConduitItemType.ERC20,
                            token,
                            from,
                            to,
                            uint256(0),
                            amount
                        );
                    }
                }
                /**
                 * @dev Internal function to transfer a single ERC721 token from a given
                 *      originator to a given recipient. Sufficient approvals must be set,
                 *      either on the respective conduit or on this contract itself.
                 *
                 * @param token       The ERC721 token to transfer.
                 * @param from        The originator of the transfer.
                 * @param to          The recipient of the transfer.
                 * @param identifier  The tokenId to transfer.
                 * @param amount      The amount to transfer (must be 1 for ERC721).
                 * @param conduitKey  A bytes32 value indicating what corresponding conduit,
                 *                    if any, to source token approvals from. The zero hash
                 *                    signifies that no conduit should be used, with direct
                 *                    approvals set on this contract.
                 * @param accumulator An open-ended array that collects transfers to execute
                 *                    against a given conduit in a single call.
                 */
                function _transferERC721(
                    address token,
                    address from,
                    address to,
                    uint256 identifier,
                    uint256 amount,
                    bytes32 conduitKey,
                    bytes memory accumulator
                ) internal {
                    // Trigger accumulated transfers if the conduits differ.
                    _triggerIfArmedAndNotAccumulatable(accumulator, conduitKey);
                    // If no conduit has been specified...
                    if (conduitKey == bytes32(0)) {
                        // Ensure that exactly one 721 item is being transferred.
                        if (amount != 1) {
                            _revertInvalidERC721TransferAmount(amount);
                        }
                        // Perform transfer via the token contract directly.
                        _performERC721Transfer(token, from, to, identifier);
                    } else {
                        // Insert the call to the conduit into the accumulator.
                        _insert(
                            conduitKey,
                            accumulator,
                            ConduitItemType.ERC721,
                            token,
                            from,
                            to,
                            identifier,
                            amount
                        );
                    }
                }
                /**
                 * @dev Internal function to transfer ERC1155 tokens from a given originator
                 *      to a given recipient. Sufficient approvals must be set, either on
                 *      the respective conduit or on this contract itself.
                 *
                 * @param token       The ERC1155 token to transfer.
                 * @param from        The originator of the transfer.
                 * @param to          The recipient of the transfer.
                 * @param identifier  The id to transfer.
                 * @param amount      The amount to transfer.
                 * @param conduitKey  A bytes32 value indicating what corresponding conduit,
                 *                    if any, to source token approvals from. The zero hash
                 *                    signifies that no conduit should be used, with direct
                 *                    approvals set on this contract.
                 * @param accumulator An open-ended array that collects transfers to execute
                 *                    against a given conduit in a single call.
                 */
                function _transferERC1155(
                    address token,
                    address from,
                    address to,
                    uint256 identifier,
                    uint256 amount,
                    bytes32 conduitKey,
                    bytes memory accumulator
                ) internal {
                    // Ensure that the supplied amount is non-zero.
                    _assertNonZeroAmount(amount);
                    // Trigger accumulated transfers if the conduits differ.
                    _triggerIfArmedAndNotAccumulatable(accumulator, conduitKey);
                    // If no conduit has been specified...
                    if (conduitKey == bytes32(0)) {
                        // Perform transfer via the token contract directly.
                        _performERC1155Transfer(token, from, to, identifier, amount);
                    } else {
                        // Insert the call to the conduit into the accumulator.
                        _insert(
                            conduitKey,
                            accumulator,
                            ConduitItemType.ERC1155,
                            token,
                            from,
                            to,
                            identifier,
                            amount
                        );
                    }
                }
                /**
                 * @dev Internal function to trigger a call to the conduit currently held by
                 *      the accumulator if the accumulator contains item transfers (i.e. it
                 *      is "armed") and the supplied conduit key does not match the key held
                 *      by the accumulator.
                 *
                 * @param accumulator An open-ended array that collects transfers to execute
                 *                    against a given conduit in a single call.
                 * @param conduitKey  A bytes32 value indicating what corresponding conduit,
                 *                    if any, to source token approvals from. The zero hash
                 *                    signifies that no conduit should be used, with direct
                 *                    approvals set on this contract.
                 */
                function _triggerIfArmedAndNotAccumulatable(
                    bytes memory accumulator,
                    bytes32 conduitKey
                ) internal {
                    // Retrieve the current conduit key from the accumulator.
                    bytes32 accumulatorConduitKey = _getAccumulatorConduitKey(accumulator);
                    // Perform conduit call if the set key does not match the supplied key.
                    if (accumulatorConduitKey != conduitKey) {
                        _triggerIfArmed(accumulator);
                    }
                }
                /**
                 * @dev Internal function to trigger a call to the conduit currently held by
                 *      the accumulator if the accumulator contains item transfers (i.e. it
                 *      is "armed").
                 *
                 * @param accumulator An open-ended array that collects transfers to execute
                 *                    against a given conduit in a single call.
                 */
                function _triggerIfArmed(bytes memory accumulator) internal {
                    // Exit if the accumulator is not "armed".
                    if (accumulator.length != AccumulatorArmed) {
                        return;
                    }
                    // Retrieve the current conduit key from the accumulator.
                    bytes32 accumulatorConduitKey = _getAccumulatorConduitKey(accumulator);
                    // Perform conduit call.
                    _trigger(accumulatorConduitKey, accumulator);
                }
                /**
                 * @dev Internal function to trigger a call to the conduit corresponding to
                 *      a given conduit key, supplying all accumulated item transfers. The
                 *      accumulator will be "disarmed" and reset in the process.
                 *
                 * @param conduitKey  A bytes32 value indicating what corresponding conduit,
                 *                    if any, to source token approvals from. The zero hash
                 *                    signifies that no conduit should be used, with direct
                 *                    approvals set on this contract.
                 * @param accumulator An open-ended array that collects transfers to execute
                 *                    against a given conduit in a single call.
                 */
                function _trigger(bytes32 conduitKey, bytes memory accumulator) internal {
                    // Declare variables for offset in memory & size of calldata to conduit.
                    uint256 callDataOffset;
                    uint256 callDataSize;
                    // Call the conduit with all the accumulated transfers.
                    assembly {
                        // Call begins at third word; the first is length or "armed" status,
                        // and the second is the current conduit key.
                        callDataOffset := add(accumulator, TwoWords)
                        // 68 + items * 192
                        callDataSize := add(
                            Accumulator_array_offset_ptr,
                            mul(
                                mload(add(accumulator, Accumulator_array_length_ptr)),
                                Conduit_transferItem_size
                            )
                        )
                    }
                    // Call conduit derived from conduit key & supply accumulated transfers.
                    _callConduitUsingOffsets(conduitKey, callDataOffset, callDataSize);
                    // Reset accumulator length to signal that it is now "disarmed".
                    assembly {
                        mstore(accumulator, AccumulatorDisarmed)
                    }
                }
                /**
                 * @dev Internal function to perform a call to the conduit corresponding to
                 *      a given conduit key based on the offset and size of the calldata in
                 *      question in memory.
                 *
                 * @param conduitKey     A bytes32 value indicating what corresponding
                 *                       conduit, if any, to source token approvals from.
                 *                       The zero hash signifies that no conduit should be
                 *                       used, with direct approvals set on this contract.
                 * @param callDataOffset The memory pointer where calldata is contained.
                 * @param callDataSize   The size of calldata in memory.
                 */
                function _callConduitUsingOffsets(
                    bytes32 conduitKey,
                    uint256 callDataOffset,
                    uint256 callDataSize
                ) internal {
                    // Derive the address of the conduit using the conduit key.
                    address conduit = _deriveConduit(conduitKey);
                    bool success;
                    bytes4 result;
                    // call the conduit.
                    assembly {
                        // Ensure first word of scratch space is empty.
                        mstore(0, 0)
                        // Perform call, placing first word of return data in scratch space.
                        success := call(
                            gas(),
                            conduit,
                            0,
                            callDataOffset,
                            callDataSize,
                            0,
                            OneWord
                        )
                        // Take value from scratch space and place it on the stack.
                        result := mload(0)
                    }
                    // If the call failed...
                    if (!success) {
                        // Pass along whatever revert reason was given by the conduit.
                        _revertWithReasonIfOneIsReturned();
                        // Otherwise, revert with a generic error.
                        _revertInvalidCallToConduit(conduit);
                    }
                    // Ensure result was extracted and matches EIP-1271 magic value.
                    if (result != ConduitInterface.execute.selector) {
                        _revertInvalidConduit(conduitKey, conduit);
                    }
                }
                /**
                 * @dev Internal pure function to retrieve the current conduit key set for
                 *      the accumulator.
                 *
                 * @param accumulator An open-ended array that collects transfers to execute
                 *                    against a given conduit in a single call.
                 *
                 * @return accumulatorConduitKey The conduit key currently set for the
                 *                               accumulator.
                 */
                function _getAccumulatorConduitKey(
                    bytes memory accumulator
                ) internal pure returns (bytes32 accumulatorConduitKey) {
                    // Retrieve the current conduit key from the accumulator.
                    assembly {
                        accumulatorConduitKey := mload(
                            add(accumulator, Accumulator_conduitKey_ptr)
                        )
                    }
                }
                /**
                 * @dev Internal pure function to place an item transfer into an accumulator
                 *      that collects a series of transfers to execute against a given
                 *      conduit in a single call.
                 *
                 * @param conduitKey  A bytes32 value indicating what corresponding conduit,
                 *                    if any, to source token approvals from. The zero hash
                 *                    signifies that no conduit should be used, with direct
                 *                    approvals set on this contract.
                 * @param accumulator An open-ended array that collects transfers to execute
                 *                    against a given conduit in a single call.
                 * @param itemType    The type of the item to transfer.
                 * @param token       The token to transfer.
                 * @param from        The originator of the transfer.
                 * @param to          The recipient of the transfer.
                 * @param identifier  The tokenId to transfer.
                 * @param amount      The amount to transfer.
                 */
                function _insert(
                    bytes32 conduitKey,
                    bytes memory accumulator,
                    ConduitItemType itemType,
                    address token,
                    address from,
                    address to,
                    uint256 identifier,
                    uint256 amount
                ) internal pure {
                    uint256 elements;
                    // "Arm" and prime accumulator if it's not already armed. The sentinel
                    // value is held in the length of the accumulator array.
                    if (accumulator.length == AccumulatorDisarmed) {
                        elements = 1;
                        bytes4 selector = ConduitInterface.execute.selector;
                        assembly {
                            mstore(accumulator, AccumulatorArmed) // "arm" the accumulator.
                            mstore(add(accumulator, Accumulator_conduitKey_ptr), conduitKey)
                            mstore(add(accumulator, Accumulator_selector_ptr), selector)
                            mstore(
                                add(accumulator, Accumulator_array_offset_ptr),
                                Accumulator_array_offset
                            )
                            mstore(add(accumulator, Accumulator_array_length_ptr), elements)
                        }
                    } else {
                        // Otherwise, increase the number of elements by one.
                        assembly {
                            elements := add(
                                mload(add(accumulator, Accumulator_array_length_ptr)),
                                1
                            )
                            mstore(add(accumulator, Accumulator_array_length_ptr), elements)
                        }
                    }
                    // Insert the item.
                    assembly {
                        let itemPointer := sub(
                            add(accumulator, mul(elements, Conduit_transferItem_size)),
                            Accumulator_itemSizeOffsetDifference
                        )
                        mstore(itemPointer, itemType)
                        mstore(add(itemPointer, Conduit_transferItem_token_ptr), token)
                        mstore(add(itemPointer, Conduit_transferItem_from_ptr), from)
                        mstore(add(itemPointer, Conduit_transferItem_to_ptr), to)
                        mstore(
                            add(itemPointer, Conduit_transferItem_identifier_ptr),
                            identifier
                        )
                        mstore(add(itemPointer, Conduit_transferItem_amount_ptr), amount)
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.17;
            import { OrderType } from "./ConsiderationEnums.sol";
            import {
                AdvancedOrder,
                BasicOrderParameters,
                OrderParameters
            } from "./ConsiderationStructs.sol";
            import { ZoneInteractionErrors } from "../interfaces/ZoneInteractionErrors.sol";
            import { LowLevelHelpers } from "./LowLevelHelpers.sol";
            import { ConsiderationEncoder } from "./ConsiderationEncoder.sol";
            import { MemoryPointer } from "../helpers/PointerLibraries.sol";
            import {
                ContractOrder_orderHash_offerer_shift,
                MaskOverFirstFourBytes,
                OneWord,
                OrderParameters_zone_offset
            } from "./ConsiderationConstants.sol";
            import {
                Error_selector_offset,
                InvalidContractOrder_error_selector,
                InvalidRestrictedOrder_error_length,
                InvalidRestrictedOrder_error_orderHash_ptr,
                InvalidRestrictedOrder_error_selector
            } from "./ConsiderationErrorConstants.sol";
            /**
             * @title ZoneInteraction
             * @author 0age
             * @notice ZoneInteraction contains logic related to interacting with zones.
             */
            contract ZoneInteraction is
                ConsiderationEncoder,
                ZoneInteractionErrors,
                LowLevelHelpers
            {
                /**
                 * @dev Internal function to determine if an order has a restricted order
                 *      type and, if so, to ensure that either the zone is the caller or
                 *      that a call to `validateOrder` on the zone returns a magic value
                 *      indicating that the order is currently valid. Note that contract
                 *      orders are not accessible via the basic fulfillment method.
                 *
                 * @param orderHash  The hash of the order.
                 * @param orderType  The order type.
                 * @param parameters The parameters of the basic order.
                 */
                function _assertRestrictedBasicOrderValidity(
                    bytes32 orderHash,
                    OrderType orderType,
                    BasicOrderParameters calldata parameters
                ) internal {
                    // Order type 2-3 require zone be caller or zone to approve.
                    // Note that in cases where fulfiller == zone, the restricted order
                    // validation will be skipped.
                    if (_isRestrictedAndCallerNotZone(orderType, parameters.zone)) {
                        // Encode the `validateOrder` call in memory.
                        (MemoryPointer callData, uint256 size) = _encodeValidateBasicOrder(
                            orderHash,
                            parameters
                        );
                        // Perform `validateOrder` call and ensure magic value was returned.
                        _callAndCheckStatus(
                            parameters.zone,
                            orderHash,
                            callData,
                            size,
                            InvalidRestrictedOrder_error_selector
                        );
                    }
                }
                /**
                 * @dev Internal function to determine the post-execution validity of
                 *      restricted and contract orders. Restricted orders where the caller
                 *      is not the zone must successfully call `validateOrder` with the
                 *      correct magic value returned. Contract orders must successfully call
                 *      `ratifyOrder` with the correct magic value returned.
                 *
                 * @param advancedOrder The advanced order in question.
                 * @param orderHashes   The order hashes of each order included as part of
                 *                      the current fulfillment.
                 * @param orderHash     The hash of the order.
                 */
                function _assertRestrictedAdvancedOrderValidity(
                    AdvancedOrder memory advancedOrder,
                    bytes32[] memory orderHashes,
                    bytes32 orderHash
                ) internal {
                    // Declare variables that will be assigned based on the order type.
                    address target;
                    uint256 errorSelector;
                    MemoryPointer callData;
                    uint256 size;
                    // Retrieve the parameters of the order in question.
                    OrderParameters memory parameters = advancedOrder.parameters;
                    // OrderType 2-3 require zone to be caller or approve via validateOrder.
                    if (
                        _isRestrictedAndCallerNotZone(parameters.orderType, parameters.zone)
                    ) {
                        // Encode the `validateOrder` call in memory.
                        (callData, size) = _encodeValidateOrder(
                            orderHash,
                            parameters,
                            advancedOrder.extraData,
                            orderHashes
                        );
                        // Set the target to the zone.
                        target = (
                            parameters
                                .toMemoryPointer()
                                .offset(OrderParameters_zone_offset)
                                .readAddress()
                        );
                        // Set the restricted-order-specific error selector.
                        errorSelector = InvalidRestrictedOrder_error_selector;
                    } else if (parameters.orderType == OrderType.CONTRACT) {
                        // Set the target to the offerer (note the offerer has no offset).
                        target = parameters.toMemoryPointer().readAddress();
                        // Shift the target 96 bits to the left.
                        uint256 shiftedOfferer;
                        assembly {
                            shiftedOfferer := shl(
                                ContractOrder_orderHash_offerer_shift,
                                target
                            )
                        }
                        // Encode the `ratifyOrder` call in memory.
                        (callData, size) = _encodeRatifyOrder(
                            orderHash,
                            parameters,
                            advancedOrder.extraData,
                            orderHashes,
                            shiftedOfferer
                        );
                        // Set the contract-order-specific error selector.
                        errorSelector = InvalidContractOrder_error_selector;
                    } else {
                        return;
                    }
                    // Perform call and ensure a corresponding magic value was returned.
                    _callAndCheckStatus(target, orderHash, callData, size, errorSelector);
                }
                /**
                 * @dev Determines whether the specified order type is restricted and the
                 *      caller is not the specified zone.
                 *
                 * @param orderType     The type of the order to check.
                 * @param zone          The address of the zone to check against.
                 *
                 * @return mustValidate True if the order type is restricted and the caller
                 *                      is not the specified zone, false otherwise.
                 */
                function _isRestrictedAndCallerNotZone(
                    OrderType orderType,
                    address zone
                ) internal view returns (bool mustValidate) {
                    assembly {
                        mustValidate := and(
                            // Note that this check requires that there are no order types
                            // beyond the current set (0-4).  It will need to be modified if
                            // more order types are added.
                            and(lt(orderType, 4), gt(orderType, 1)),
                            iszero(eq(caller(), zone))
                        )
                    }
                }
                /**
                 * @dev Calls the specified target with the given data and checks the status
                 *      of the call. Revert reasons will be "bubbled up" if one is returned,
                 *      otherwise reverting calls will throw a generic error based on the
                 *      supplied error handler.
                 *
                 * @param target        The address of the contract to call.
                 * @param orderHash     The hash of the order associated with the call.
                 * @param callData      The data to pass to the contract call.
                 * @param size          The size of calldata.
                 * @param errorSelector The error handling function to call if the call
                 *                      fails or the magic value does not match.
                 */
                function _callAndCheckStatus(
                    address target,
                    bytes32 orderHash,
                    MemoryPointer callData,
                    uint256 size,
                    uint256 errorSelector
                ) internal {
                    bool success;
                    bool magicMatch;
                    assembly {
                        // Get magic value from the selector at start of provided calldata.
                        let magic := and(mload(callData), MaskOverFirstFourBytes)
                        // Clear the start of scratch space.
                        mstore(0, 0)
                        // Perform call, placing result in the first word of scratch space.
                        success := call(gas(), target, 0, callData, size, 0, OneWord)
                        // Determine if returned magic value matches the calldata selector.
                        magicMatch := eq(magic, mload(0))
                    }
                    // Revert if the call was not successful.
                    if (!success) {
                        // Revert and pass reason along if one was returned.
                        _revertWithReasonIfOneIsReturned();
                        // If no reason was returned, revert with supplied error selector.
                        assembly {
                            mstore(0, errorSelector)
                            mstore(InvalidRestrictedOrder_error_orderHash_ptr, orderHash)
                            // revert(abi.encodeWithSelector(
                            //     "InvalidRestrictedOrder(bytes32)",
                            //     orderHash
                            // ))
                            revert(
                                Error_selector_offset,
                                InvalidRestrictedOrder_error_length
                            )
                        }
                    }
                    // Revert if the correct magic value was not returned.
                    if (!magicMatch) {
                        // Revert with a generic error message.
                        assembly {
                            mstore(0, errorSelector)
                            mstore(InvalidRestrictedOrder_error_orderHash_ptr, orderHash)
                            // revert(abi.encodeWithSelector(
                            //     "InvalidRestrictedOrder(bytes32)",
                            //     orderHash
                            // ))
                            revert(
                                Error_selector_offset,
                                InvalidRestrictedOrder_error_length
                            )
                        }
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.13;
            import {
                ConduitBatch1155Transfer,
                ConduitTransfer
            } from "../conduit/lib/ConduitStructs.sol";
            /**
             * @title ConduitInterface
             * @author 0age
             * @notice ConduitInterface contains all external function interfaces, events,
             *         and errors for conduit contracts.
             */
            interface ConduitInterface {
                /**
                 * @dev Revert with an error when attempting to execute transfers using a
                 *      caller that does not have an open channel.
                 */
                error ChannelClosed(address channel);
                /**
                 * @dev Revert with an error when attempting to update a channel to the
                 *      current status of that channel.
                 */
                error ChannelStatusAlreadySet(address channel, bool isOpen);
                /**
                 * @dev Revert with an error when attempting to execute a transfer for an
                 *      item that does not have an ERC20/721/1155 item type.
                 */
                error InvalidItemType();
                /**
                 * @dev Revert with an error when attempting to update the status of a
                 *      channel from a caller that is not the conduit controller.
                 */
                error InvalidController();
                /**
                 * @dev Emit an event whenever a channel is opened or closed.
                 *
                 * @param channel The channel that has been updated.
                 * @param open    A boolean indicating whether the conduit is open or not.
                 */
                event ChannelUpdated(address indexed channel, bool open);
                /**
                 * @notice Execute a sequence of ERC20/721/1155 transfers. Only a caller
                 *         with an open channel can call this function.
                 *
                 * @param transfers The ERC20/721/1155 transfers to perform.
                 *
                 * @return magicValue A magic value indicating that the transfers were
                 *                    performed successfully.
                 */
                function execute(
                    ConduitTransfer[] calldata transfers
                ) external returns (bytes4 magicValue);
                /**
                 * @notice Execute a sequence of batch 1155 transfers. Only a caller with an
                 *         open channel can call this function.
                 *
                 * @param batch1155Transfers The 1155 batch transfers to perform.
                 *
                 * @return magicValue A magic value indicating that the transfers were
                 *                    performed successfully.
                 */
                function executeBatch1155(
                    ConduitBatch1155Transfer[] calldata batch1155Transfers
                ) external returns (bytes4 magicValue);
                /**
                 * @notice Execute a sequence of transfers, both single and batch 1155. Only
                 *         a caller with an open channel can call this function.
                 *
                 * @param standardTransfers  The ERC20/721/1155 transfers to perform.
                 * @param batch1155Transfers The 1155 batch transfers to perform.
                 *
                 * @return magicValue A magic value indicating that the transfers were
                 *                    performed successfully.
                 */
                function executeWithBatch1155(
                    ConduitTransfer[] calldata standardTransfers,
                    ConduitBatch1155Transfer[] calldata batch1155Transfers
                ) external returns (bytes4 magicValue);
                /**
                 * @notice Open or close a given channel. Only callable by the controller.
                 *
                 * @param channel The channel to open or close.
                 * @param isOpen  The status of the channel (either open or closed).
                 */
                function updateChannel(address channel, bool isOpen) external;
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.17;
            import { OrderStatus } from "./ConsiderationStructs.sol";
            import { Assertions } from "./Assertions.sol";
            import { SignatureVerification } from "./SignatureVerification.sol";
            import {
                _revertInvalidTime,
                _revertOrderAlreadyFilled,
                _revertOrderIsCancelled,
                _revertOrderPartiallyFilled
            } from "./ConsiderationErrors.sol";
            import {
                BulkOrderProof_keyShift,
                BulkOrderProof_keySize,
                BulkOrderProof_lengthAdjustmentBeforeMask,
                BulkOrderProof_lengthRangeAfterMask,
                BulkOrderProof_minSize,
                BulkOrderProof_rangeSize,
                ECDSA_MaxLength,
                OneWord,
                OneWordShift,
                ThirtyOneBytes,
                TwoWords
            } from "./ConsiderationConstants.sol";
            /**
             * @title Verifiers
             * @author 0age
             * @notice Verifiers contains functions for performing verifications.
             */
            contract Verifiers is Assertions, SignatureVerification {
                /**
                 * @dev Derive and set hashes, reference chainId, and associated domain
                 *      separator during deployment.
                 *
                 * @param conduitController A contract that deploys conduits, or proxies
                 *                          that may optionally be used to transfer approved
                 *                          ERC20/721/1155 tokens.
                 */
                constructor(address conduitController) Assertions(conduitController) {}
                /**
                 * @dev Internal view function to ensure that the current time falls within
                 *      an order's valid timespan.
                 *
                 * @param startTime       The time at which the order becomes active.
                 * @param endTime         The time at which the order becomes inactive.
                 * @param revertOnInvalid A boolean indicating whether to revert if the
                 *                        order is not active.
                 *
                 * @return valid A boolean indicating whether the order is active.
                 */
                function _verifyTime(
                    uint256 startTime,
                    uint256 endTime,
                    bool revertOnInvalid
                ) internal view returns (bool valid) {
                    // Mark as valid if order has started and has not already ended.
                    assembly {
                        valid := and(
                            iszero(gt(startTime, timestamp())),
                            gt(endTime, timestamp())
                        )
                    }
                    // Only revert on invalid if revertOnInvalid has been supplied as true.
                    if (revertOnInvalid && !valid) {
                        _revertInvalidTime(startTime, endTime);
                    }
                }
                /**
                 * @dev Internal view function to verify the signature of an order. An
                 *      ERC-1271 fallback will be attempted if either the signature length
                 *      is not 64 or 65 bytes or if the recovered signer does not match the
                 *      supplied offerer. Note that in cases where a 64 or 65 byte signature
                 *      is supplied, only standard ECDSA signatures that recover to a
                 *      non-zero address are supported.
                 *
                 * @param offerer   The offerer for the order.
                 * @param orderHash The order hash.
                 * @param signature A signature from the offerer indicating that the order
                 *                  has been approved.
                 */
                function _verifySignature(
                    address offerer,
                    bytes32 orderHash,
                    bytes memory signature
                ) internal view {
                    // Determine whether the offerer is the caller.
                    bool offererIsCaller;
                    assembly {
                        offererIsCaller := eq(offerer, caller())
                    }
                    // Skip signature verification if the offerer is the caller.
                    if (offererIsCaller) {
                        return;
                    }
                    // Derive the EIP-712 domain separator.
                    bytes32 domainSeparator = _domainSeparator();
                    // Derive original EIP-712 digest using domain separator and order hash.
                    bytes32 originalDigest = _deriveEIP712Digest(
                        domainSeparator,
                        orderHash
                    );
                    // Read the length of the signature from memory and place on the stack.
                    uint256 originalSignatureLength = signature.length;
                    // Determine effective digest if signature has a valid bulk order size.
                    bytes32 digest;
                    if (_isValidBulkOrderSize(originalSignatureLength)) {
                        // Rederive order hash and digest using bulk order proof.
                        (orderHash) = _computeBulkOrderProof(signature, orderHash);
                        digest = _deriveEIP712Digest(domainSeparator, orderHash);
                    } else {
                        // Supply the original digest as the effective digest.
                        digest = originalDigest;
                    }
                    // Ensure that the signature for the digest is valid for the offerer.
                    _assertValidSignature(
                        offerer,
                        digest,
                        originalDigest,
                        originalSignatureLength,
                        signature
                    );
                }
                /**
                 * @dev Determines whether the specified bulk order size is valid.
                 *
                 * @param signatureLength The signature length of the bulk order to check.
                 *
                 * @return validLength True if bulk order size is valid, false otherwise.
                 */
                function _isValidBulkOrderSize(
                    uint256 signatureLength
                ) internal pure returns (bool validLength) {
                    // Utilize assembly to validate the length; the equivalent logic is
                    // (64 + x) + 3 + 32y where (0 <= x <= 1) and (1 <= y <= 24).
                    assembly {
                        validLength := and(
                            lt(
                                sub(signatureLength, BulkOrderProof_minSize),
                                BulkOrderProof_rangeSize
                            ),
                            lt(
                                and(
                                    add(
                                        signatureLength,
                                        BulkOrderProof_lengthAdjustmentBeforeMask
                                    ),
                                    ThirtyOneBytes
                                ),
                                BulkOrderProof_lengthRangeAfterMask
                            )
                        )
                    }
                }
                /**
                 * @dev Computes the bulk order hash for the specified proof and leaf. Note
                 *      that if an index that exceeds the number of orders in the bulk order
                 *      payload will instead "wrap around" and refer to an earlier index.
                 *
                 * @param proofAndSignature The proof and signature of the bulk order.
                 * @param leaf              The leaf of the bulk order tree.
                 *
                 * @return bulkOrderHash The bulk order hash.
                 */
                function _computeBulkOrderProof(
                    bytes memory proofAndSignature,
                    bytes32 leaf
                ) internal pure returns (bytes32 bulkOrderHash) {
                    // Declare arguments for the root hash and the height of the proof.
                    bytes32 root;
                    uint256 height;
                    // Utilize assembly to efficiently derive the root hash using the proof.
                    assembly {
                        // Retrieve the length of the proof, key, and signature combined.
                        let fullLength := mload(proofAndSignature)
                        // If proofAndSignature has odd length, it is a compact signature
                        // with 64 bytes.
                        let signatureLength := sub(ECDSA_MaxLength, and(fullLength, 1))
                        // Derive height (or depth of tree) with signature and proof length.
                        height := shr(OneWordShift, sub(fullLength, signatureLength))
                        // Update the length in memory to only include the signature.
                        mstore(proofAndSignature, signatureLength)
                        // Derive the pointer for the key using the signature length.
                        let keyPtr := add(proofAndSignature, add(OneWord, signatureLength))
                        // Retrieve the three-byte key using the derived pointer.
                        let key := shr(BulkOrderProof_keyShift, mload(keyPtr))
                        /// Retrieve pointer to first proof element by applying a constant
                        // for the key size to the derived key pointer.
                        let proof := add(keyPtr, BulkOrderProof_keySize)
                        // Compute level 1.
                        let scratchPtr1 := shl(OneWordShift, and(key, 1))
                        mstore(scratchPtr1, leaf)
                        mstore(xor(scratchPtr1, OneWord), mload(proof))
                        // Compute remaining proofs.
                        for {
                            let i := 1
                        } lt(i, height) {
                            i := add(i, 1)
                        } {
                            proof := add(proof, OneWord)
                            let scratchPtr := shl(OneWordShift, and(shr(i, key), 1))
                            mstore(scratchPtr, keccak256(0, TwoWords))
                            mstore(xor(scratchPtr, OneWord), mload(proof))
                        }
                        // Compute root hash.
                        root := keccak256(0, TwoWords)
                    }
                    // Retrieve appropriate typehash constant based on height.
                    bytes32 rootTypeHash = _lookupBulkOrderTypehash(height);
                    // Use the typehash and the root hash to derive final bulk order hash.
                    assembly {
                        mstore(0, rootTypeHash)
                        mstore(OneWord, root)
                        bulkOrderHash := keccak256(0, TwoWords)
                    }
                }
                /**
                 * @dev Internal view function to validate that a given order is fillable
                 *      and not cancelled based on the order status.
                 *
                 * @param orderHash       The order hash.
                 * @param orderStatus     The status of the order, including whether it has
                 *                        been cancelled and the fraction filled.
                 * @param onlyAllowUnused A boolean flag indicating whether partial fills
                 *                        are supported by the calling function.
                 * @param revertOnInvalid A boolean indicating whether to revert if the
                 *                        order has been cancelled or filled beyond the
                 *                        allowable amount.
                 *
                 * @return valid A boolean indicating whether the order is valid.
                 */
                function _verifyOrderStatus(
                    bytes32 orderHash,
                    OrderStatus storage orderStatus,
                    bool onlyAllowUnused,
                    bool revertOnInvalid
                ) internal view returns (bool valid) {
                    // Ensure that the order has not been cancelled.
                    if (orderStatus.isCancelled) {
                        // Only revert if revertOnInvalid has been supplied as true.
                        if (revertOnInvalid) {
                            _revertOrderIsCancelled(orderHash);
                        }
                        // Return false as the order status is invalid.
                        return false;
                    }
                    // Read order status numerator from storage and place on stack.
                    uint256 orderStatusNumerator = orderStatus.numerator;
                    // If the order is not entirely unused...
                    if (orderStatusNumerator != 0) {
                        // ensure the order has not been partially filled when not allowed.
                        if (onlyAllowUnused) {
                            // Always revert on partial fills when onlyAllowUnused is true.
                            _revertOrderPartiallyFilled(orderHash);
                        }
                        // Otherwise, ensure that order has not been entirely filled.
                        else if (orderStatusNumerator >= orderStatus.denominator) {
                            // Only revert if revertOnInvalid has been supplied as true.
                            if (revertOnInvalid) {
                                _revertOrderAlreadyFilled(orderHash);
                            }
                            // Return false as the order status is invalid.
                            return false;
                        }
                    }
                    // Return true as the order status is valid.
                    valid = true;
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.13;
            import {
                BadReturnValueFromERC20OnTransfer_error_amount_ptr,
                BadReturnValueFromERC20OnTransfer_error_from_ptr,
                BadReturnValueFromERC20OnTransfer_error_length,
                BadReturnValueFromERC20OnTransfer_error_selector,
                BadReturnValueFromERC20OnTransfer_error_to_ptr,
                BadReturnValueFromERC20OnTransfer_error_token_ptr,
                BatchTransfer1155Params_amounts_head_ptr,
                BatchTransfer1155Params_calldata_baseSize,
                BatchTransfer1155Params_data_head_ptr,
                BatchTransfer1155Params_data_length_basePtr,
                BatchTransfer1155Params_ids_head_ptr,
                BatchTransfer1155Params_ids_length_offset,
                BatchTransfer1155Params_ids_length_ptr,
                BatchTransfer1155Params_ptr,
                ConduitBatch1155Transfer_amounts_length_baseOffset,
                ConduitBatch1155Transfer_from_offset,
                ConduitBatch1155Transfer_ids_head_offset,
                ConduitBatch1155Transfer_ids_length_offset,
                ConduitBatch1155Transfer_usable_head_size,
                ConduitBatchTransfer_amounts_head_offset,
                CostPerWord,
                DefaultFreeMemoryPointer,
                ERC1155_safeBatchTransferFrom_signature,
                ERC1155_safeTransferFrom_amount_ptr,
                ERC1155_safeTransferFrom_data_length_offset,
                ERC1155_safeTransferFrom_data_length_ptr,
                ERC1155_safeTransferFrom_data_offset_ptr,
                ERC1155_safeTransferFrom_from_ptr,
                ERC1155_safeTransferFrom_id_ptr,
                ERC1155_safeTransferFrom_length,
                ERC1155_safeTransferFrom_sig_ptr,
                ERC1155_safeTransferFrom_signature,
                ERC1155_safeTransferFrom_to_ptr,
                ERC1155BatchTransferGenericFailure_error_signature,
                ERC1155BatchTransferGenericFailure_ids_offset,
                ERC1155BatchTransferGenericFailure_token_ptr,
                ERC20_transferFrom_amount_ptr,
                ERC20_transferFrom_from_ptr,
                ERC20_transferFrom_length,
                ERC20_transferFrom_sig_ptr,
                ERC20_transferFrom_signature,
                ERC20_transferFrom_to_ptr,
                ERC721_transferFrom_from_ptr,
                ERC721_transferFrom_id_ptr,
                ERC721_transferFrom_length,
                ERC721_transferFrom_sig_ptr,
                ERC721_transferFrom_signature,
                ERC721_transferFrom_to_ptr,
                ExtraGasBuffer,
                FreeMemoryPointerSlot,
                Generic_error_selector_offset,
                Invalid1155BatchTransferEncoding_length,
                Invalid1155BatchTransferEncoding_ptr,
                Invalid1155BatchTransferEncoding_selector,
                MemoryExpansionCoefficientShift,
                NoContract_error_account_ptr,
                NoContract_error_length,
                NoContract_error_selector,
                OneWord,
                OneWordShift,
                Slot0x80,
                Slot0xA0,
                Slot0xC0,
                ThirtyOneBytes,
                TokenTransferGenericFailure_err_identifier_ptr,
                TokenTransferGenericFailure_error_amount_ptr,
                TokenTransferGenericFailure_error_from_ptr,
                TokenTransferGenericFailure_error_identifier_ptr,
                TokenTransferGenericFailure_error_length,
                TokenTransferGenericFailure_error_selector,
                TokenTransferGenericFailure_error_to_ptr,
                TokenTransferGenericFailure_error_token_ptr,
                TwoWords,
                TwoWordsShift,
                ZeroSlot
            } from "./TokenTransferrerConstants.sol";
            import {
                TokenTransferrerErrors
            } from "../interfaces/TokenTransferrerErrors.sol";
            import { ConduitBatch1155Transfer } from "../conduit/lib/ConduitStructs.sol";
            /**
             * @title TokenTransferrer
             * @author 0age
             * @custom:coauthor d1ll0n
             * @custom:coauthor transmissions11
             * @notice TokenTransferrer is a library for performing optimized ERC20, ERC721,
             *         ERC1155, and batch ERC1155 transfers, used by both Seaport as well as
             *         by conduits deployed by the ConduitController. Use great caution when
             *         considering these functions for use in other codebases, as there are
             *         significant side effects and edge cases that need to be thoroughly
             *         understood and carefully addressed.
             */
            contract TokenTransferrer is TokenTransferrerErrors {
                /**
                 * @dev Internal function to transfer ERC20 tokens from a given originator
                 *      to a given recipient. Sufficient approvals must be set on the
                 *      contract performing the transfer.
                 *
                 * @param token      The ERC20 token to transfer.
                 * @param from       The originator of the transfer.
                 * @param to         The recipient of the transfer.
                 * @param amount     The amount to transfer.
                 */
                function _performERC20Transfer(
                    address token,
                    address from,
                    address to,
                    uint256 amount
                ) internal {
                    // Utilize assembly to perform an optimized ERC20 token transfer.
                    assembly {
                        // The free memory pointer memory slot will be used when populating
                        // call data for the transfer; read the value and restore it later.
                        let memPointer := mload(FreeMemoryPointerSlot)
                        // Write call data into memory, starting with function selector.
                        mstore(ERC20_transferFrom_sig_ptr, ERC20_transferFrom_signature)
                        mstore(ERC20_transferFrom_from_ptr, from)
                        mstore(ERC20_transferFrom_to_ptr, to)
                        mstore(ERC20_transferFrom_amount_ptr, amount)
                        // Make call & copy up to 32 bytes of return data to scratch space.
                        // Scratch space does not need to be cleared ahead of time, as the
                        // subsequent check will ensure that either at least a full word of
                        // return data is received (in which case it will be overwritten) or
                        // that no data is received (in which case scratch space will be
                        // ignored) on a successful call to the given token.
                        let callStatus := call(
                            gas(),
                            token,
                            0,
                            ERC20_transferFrom_sig_ptr,
                            ERC20_transferFrom_length,
                            0,
                            OneWord
                        )
                        // Determine whether transfer was successful using status & result.
                        let success := and(
                            // Set success to whether the call reverted, if not check it
                            // either returned exactly 1 (can't just be non-zero data), or
                            // had no return data.
                            or(
                                and(eq(mload(0), 1), gt(returndatasize(), 31)),
                                iszero(returndatasize())
                            ),
                            callStatus
                        )
                        // Handle cases where either the transfer failed or no data was
                        // returned. Group these, as most transfers will succeed with data.
                        // Equivalent to `or(iszero(success), iszero(returndatasize()))`
                        // but after it's inverted for JUMPI this expression is cheaper.
                        if iszero(and(success, iszero(iszero(returndatasize())))) {
                            // If the token has no code or the transfer failed: Equivalent
                            // to `or(iszero(success), iszero(extcodesize(token)))` but
                            // after it's inverted for JUMPI this expression is cheaper.
                            if iszero(and(iszero(iszero(extcodesize(token))), success)) {
                                // If the transfer failed:
                                if iszero(success) {
                                    // If it was due to a revert:
                                    if iszero(callStatus) {
                                        // If it returned a message, bubble it up as long as
                                        // sufficient gas remains to do so:
                                        if returndatasize() {
                                            // Ensure that sufficient gas is available to
                                            // copy returndata while expanding memory where
                                            // necessary. Start by computing the word size
                                            // of returndata and allocated memory. Round up
                                            // to the nearest full word.
                                            let returnDataWords := shr(
                                                OneWordShift,
                                                add(returndatasize(), ThirtyOneBytes)
                                            )
                                            // Note: use the free memory pointer in place of
                                            // msize() to work around a Yul warning that
                                            // prevents accessing msize directly when the IR
                                            // pipeline is activated.
                                            let msizeWords := shr(OneWordShift, memPointer)
                                            // Next, compute the cost of the returndatacopy.
                                            let cost := mul(CostPerWord, returnDataWords)
                                            // Then, compute cost of new memory allocation.
                                            if gt(returnDataWords, msizeWords) {
                                                cost := add(
                                                    cost,
                                                    add(
                                                        mul(
                                                            sub(
                                                                returnDataWords,
                                                                msizeWords
                                                            ),
                                                            CostPerWord
                                                        ),
                                                        shr(
                                                            MemoryExpansionCoefficientShift,
                                                            sub(
                                                                mul(
                                                                    returnDataWords,
                                                                    returnDataWords
                                                                ),
                                                                mul(msizeWords, msizeWords)
                                                            )
                                                        )
                                                    )
                                                )
                                            }
                                            // Finally, add a small constant and compare to
                                            // gas remaining; bubble up the revert data if
                                            // enough gas is still available.
                                            if lt(add(cost, ExtraGasBuffer), gas()) {
                                                // Copy returndata to memory; overwrite
                                                // existing memory.
                                                returndatacopy(0, 0, returndatasize())
                                                // Revert, specifying memory region with
                                                // copied returndata.
                                                revert(0, returndatasize())
                                            }
                                        }
                                        // Store left-padded selector with push4, mem[28:32]
                                        mstore(
                                            0,
                                            TokenTransferGenericFailure_error_selector
                                        )
                                        mstore(
                                            TokenTransferGenericFailure_error_token_ptr,
                                            token
                                        )
                                        mstore(
                                            TokenTransferGenericFailure_error_from_ptr,
                                            from
                                        )
                                        mstore(TokenTransferGenericFailure_error_to_ptr, to)
                                        mstore(
                                            TokenTransferGenericFailure_err_identifier_ptr,
                                            0
                                        )
                                        mstore(
                                            TokenTransferGenericFailure_error_amount_ptr,
                                            amount
                                        )
                                        // revert(abi.encodeWithSignature(
                                        //     "TokenTransferGenericFailure(
                                        //         address,address,address,uint256,uint256
                                        //     )", token, from, to, identifier, amount
                                        // ))
                                        revert(
                                            Generic_error_selector_offset,
                                            TokenTransferGenericFailure_error_length
                                        )
                                    }
                                    // Otherwise revert with a message about the token
                                    // returning false or non-compliant return values.
                                    // Store left-padded selector with push4, mem[28:32]
                                    mstore(
                                        0,
                                        BadReturnValueFromERC20OnTransfer_error_selector
                                    )
                                    mstore(
                                        BadReturnValueFromERC20OnTransfer_error_token_ptr,
                                        token
                                    )
                                    mstore(
                                        BadReturnValueFromERC20OnTransfer_error_from_ptr,
                                        from
                                    )
                                    mstore(
                                        BadReturnValueFromERC20OnTransfer_error_to_ptr,
                                        to
                                    )
                                    mstore(
                                        BadReturnValueFromERC20OnTransfer_error_amount_ptr,
                                        amount
                                    )
                                    // revert(abi.encodeWithSignature(
                                    //     "BadReturnValueFromERC20OnTransfer(
                                    //         address,address,address,uint256
                                    //     )", token, from, to, amount
                                    // ))
                                    revert(
                                        Generic_error_selector_offset,
                                        BadReturnValueFromERC20OnTransfer_error_length
                                    )
                                }
                                // Otherwise, revert with error about token not having code:
                                // Store left-padded selector with push4, mem[28:32]
                                mstore(0, NoContract_error_selector)
                                mstore(NoContract_error_account_ptr, token)
                                // revert(abi.encodeWithSignature(
                                //      "NoContract(address)", account
                                // ))
                                revert(
                                    Generic_error_selector_offset,
                                    NoContract_error_length
                                )
                            }
                            // Otherwise, the token just returned no data despite the call
                            // having succeeded; no need to optimize for this as it's not
                            // technically ERC20 compliant.
                        }
                        // Restore the original free memory pointer.
                        mstore(FreeMemoryPointerSlot, memPointer)
                        // Restore the zero slot to zero.
                        mstore(ZeroSlot, 0)
                    }
                }
                /**
                 * @dev Internal function to transfer an ERC721 token from a given
                 *      originator to a given recipient. Sufficient approvals must be set on
                 *      the contract performing the transfer. Note that this function does
                 *      not check whether the receiver can accept the ERC721 token (i.e. it
                 *      does not use `safeTransferFrom`).
                 *
                 * @param token      The ERC721 token to transfer.
                 * @param from       The originator of the transfer.
                 * @param to         The recipient of the transfer.
                 * @param identifier The tokenId to transfer.
                 */
                function _performERC721Transfer(
                    address token,
                    address from,
                    address to,
                    uint256 identifier
                ) internal {
                    // Utilize assembly to perform an optimized ERC721 token transfer.
                    assembly {
                        // If the token has no code, revert.
                        if iszero(extcodesize(token)) {
                            // Store left-padded selector with push4, mem[28:32] = selector
                            mstore(0, NoContract_error_selector)
                            mstore(NoContract_error_account_ptr, token)
                            // revert(abi.encodeWithSignature(
                            //     "NoContract(address)", account
                            // ))
                            revert(Generic_error_selector_offset, NoContract_error_length)
                        }
                        // The free memory pointer memory slot will be used when populating
                        // call data for the transfer; read the value and restore it later.
                        let memPointer := mload(FreeMemoryPointerSlot)
                        // Write call data to memory starting with function selector.
                        mstore(ERC721_transferFrom_sig_ptr, ERC721_transferFrom_signature)
                        mstore(ERC721_transferFrom_from_ptr, from)
                        mstore(ERC721_transferFrom_to_ptr, to)
                        mstore(ERC721_transferFrom_id_ptr, identifier)
                        // Perform the call, ignoring return data.
                        let success := call(
                            gas(),
                            token,
                            0,
                            ERC721_transferFrom_sig_ptr,
                            ERC721_transferFrom_length,
                            0,
                            0
                        )
                        // If the transfer reverted:
                        if iszero(success) {
                            // If it returned a message, bubble it up as long as sufficient
                            // gas remains to do so:
                            if returndatasize() {
                                // Ensure that sufficient gas is available to copy
                                // returndata while expanding memory where necessary. Start
                                // by computing word size of returndata & allocated memory.
                                // Round up to the nearest full word.
                                let returnDataWords := shr(
                                    OneWordShift,
                                    add(returndatasize(), ThirtyOneBytes)
                                )
                                // Note: use the free memory pointer in place of msize() to
                                // work around a Yul warning that prevents accessing msize
                                // directly when the IR pipeline is activated.
                                let msizeWords := shr(OneWordShift, memPointer)
                                // Next, compute the cost of the returndatacopy.
                                let cost := mul(CostPerWord, returnDataWords)
                                // Then, compute cost of new memory allocation.
                                if gt(returnDataWords, msizeWords) {
                                    cost := add(
                                        cost,
                                        add(
                                            mul(
                                                sub(returnDataWords, msizeWords),
                                                CostPerWord
                                            ),
                                            shr(
                                                MemoryExpansionCoefficientShift,
                                                sub(
                                                    mul(returnDataWords, returnDataWords),
                                                    mul(msizeWords, msizeWords)
                                                )
                                            )
                                        )
                                    )
                                }
                                // Finally, add a small constant and compare to gas
                                // remaining; bubble up the revert data if enough gas is
                                // still available.
                                if lt(add(cost, ExtraGasBuffer), gas()) {
                                    // Copy returndata to memory; overwrite existing memory.
                                    returndatacopy(0, 0, returndatasize())
                                    // Revert, giving memory region with copied returndata.
                                    revert(0, returndatasize())
                                }
                            }
                            // Otherwise revert with a generic error message.
                            // Store left-padded selector with push4, mem[28:32] = selector
                            mstore(0, TokenTransferGenericFailure_error_selector)
                            mstore(TokenTransferGenericFailure_error_token_ptr, token)
                            mstore(TokenTransferGenericFailure_error_from_ptr, from)
                            mstore(TokenTransferGenericFailure_error_to_ptr, to)
                            mstore(
                                TokenTransferGenericFailure_error_identifier_ptr,
                                identifier
                            )
                            mstore(TokenTransferGenericFailure_error_amount_ptr, 1)
                            // revert(abi.encodeWithSignature(
                            //     "TokenTransferGenericFailure(
                            //         address,address,address,uint256,uint256
                            //     )", token, from, to, identifier, amount
                            // ))
                            revert(
                                Generic_error_selector_offset,
                                TokenTransferGenericFailure_error_length
                            )
                        }
                        // Restore the original free memory pointer.
                        mstore(FreeMemoryPointerSlot, memPointer)
                        // Restore the zero slot to zero.
                        mstore(ZeroSlot, 0)
                    }
                }
                /**
                 * @dev Internal function to transfer ERC1155 tokens from a given
                 *      originator to a given recipient. Sufficient approvals must be set on
                 *      the contract performing the transfer and contract recipients must
                 *      implement the ERC1155TokenReceiver interface to indicate that they
                 *      are willing to accept the transfer.
                 *
                 * @param token      The ERC1155 token to transfer.
                 * @param from       The originator of the transfer.
                 * @param to         The recipient of the transfer.
                 * @param identifier The id to transfer.
                 * @param amount     The amount to transfer.
                 */
                function _performERC1155Transfer(
                    address token,
                    address from,
                    address to,
                    uint256 identifier,
                    uint256 amount
                ) internal {
                    // Utilize assembly to perform an optimized ERC1155 token transfer.
                    assembly {
                        // If the token has no code, revert.
                        if iszero(extcodesize(token)) {
                            // Store left-padded selector with push4, mem[28:32] = selector
                            mstore(0, NoContract_error_selector)
                            mstore(NoContract_error_account_ptr, token)
                            // revert(abi.encodeWithSignature(
                            //     "NoContract(address)", account
                            // ))
                            revert(Generic_error_selector_offset, NoContract_error_length)
                        }
                        // The following memory slots will be used when populating call data
                        // for the transfer; read the values and restore them later.
                        let memPointer := mload(FreeMemoryPointerSlot)
                        let slot0x80 := mload(Slot0x80)
                        let slot0xA0 := mload(Slot0xA0)
                        let slot0xC0 := mload(Slot0xC0)
                        // Write call data into memory, beginning with function selector.
                        mstore(
                            ERC1155_safeTransferFrom_sig_ptr,
                            ERC1155_safeTransferFrom_signature
                        )
                        mstore(ERC1155_safeTransferFrom_from_ptr, from)
                        mstore(ERC1155_safeTransferFrom_to_ptr, to)
                        mstore(ERC1155_safeTransferFrom_id_ptr, identifier)
                        mstore(ERC1155_safeTransferFrom_amount_ptr, amount)
                        mstore(
                            ERC1155_safeTransferFrom_data_offset_ptr,
                            ERC1155_safeTransferFrom_data_length_offset
                        )
                        mstore(ERC1155_safeTransferFrom_data_length_ptr, 0)
                        // Perform the call, ignoring return data.
                        let success := call(
                            gas(),
                            token,
                            0,
                            ERC1155_safeTransferFrom_sig_ptr,
                            ERC1155_safeTransferFrom_length,
                            0,
                            0
                        )
                        // If the transfer reverted:
                        if iszero(success) {
                            // If it returned a message, bubble it up as long as sufficient
                            // gas remains to do so:
                            if returndatasize() {
                                // Ensure that sufficient gas is available to copy
                                // returndata while expanding memory where necessary. Start
                                // by computing word size of returndata & allocated memory.
                                // Round up to the nearest full word.
                                let returnDataWords := shr(
                                    OneWordShift,
                                    add(returndatasize(), ThirtyOneBytes)
                                )
                                // Note: use the free memory pointer in place of msize() to
                                // work around a Yul warning that prevents accessing msize
                                // directly when the IR pipeline is activated.
                                let msizeWords := shr(OneWordShift, memPointer)
                                // Next, compute the cost of the returndatacopy.
                                let cost := mul(CostPerWord, returnDataWords)
                                // Then, compute cost of new memory allocation.
                                if gt(returnDataWords, msizeWords) {
                                    cost := add(
                                        cost,
                                        add(
                                            mul(
                                                sub(returnDataWords, msizeWords),
                                                CostPerWord
                                            ),
                                            shr(
                                                MemoryExpansionCoefficientShift,
                                                sub(
                                                    mul(returnDataWords, returnDataWords),
                                                    mul(msizeWords, msizeWords)
                                                )
                                            )
                                        )
                                    )
                                }
                                // Finally, add a small constant and compare to gas
                                // remaining; bubble up the revert data if enough gas is
                                // still available.
                                if lt(add(cost, ExtraGasBuffer), gas()) {
                                    // Copy returndata to memory; overwrite existing memory.
                                    returndatacopy(0, 0, returndatasize())
                                    // Revert, giving memory region with copied returndata.
                                    revert(0, returndatasize())
                                }
                            }
                            // Otherwise revert with a generic error message.
                            // Store left-padded selector with push4, mem[28:32] = selector
                            mstore(0, TokenTransferGenericFailure_error_selector)
                            mstore(TokenTransferGenericFailure_error_token_ptr, token)
                            mstore(TokenTransferGenericFailure_error_from_ptr, from)
                            mstore(TokenTransferGenericFailure_error_to_ptr, to)
                            mstore(
                                TokenTransferGenericFailure_error_identifier_ptr,
                                identifier
                            )
                            mstore(TokenTransferGenericFailure_error_amount_ptr, amount)
                            // revert(abi.encodeWithSignature(
                            //     "TokenTransferGenericFailure(
                            //         address,address,address,uint256,uint256
                            //     )", token, from, to, identifier, amount
                            // ))
                            revert(
                                Generic_error_selector_offset,
                                TokenTransferGenericFailure_error_length
                            )
                        }
                        mstore(Slot0x80, slot0x80) // Restore slot 0x80.
                        mstore(Slot0xA0, slot0xA0) // Restore slot 0xA0.
                        mstore(Slot0xC0, slot0xC0) // Restore slot 0xC0.
                        // Restore the original free memory pointer.
                        mstore(FreeMemoryPointerSlot, memPointer)
                        // Restore the zero slot to zero.
                        mstore(ZeroSlot, 0)
                    }
                }
                /**
                 * @dev Internal function to transfer ERC1155 tokens from a given
                 *      originator to a given recipient. Sufficient approvals must be set on
                 *      the contract performing the transfer and contract recipients must
                 *      implement the ERC1155TokenReceiver interface to indicate that they
                 *      are willing to accept the transfer. NOTE: this function is not
                 *      memory-safe; it will overwrite existing memory, restore the free
                 *      memory pointer to the default value, and overwrite the zero slot.
                 *      This function should only be called once memory is no longer
                 *      required and when uninitialized arrays are not utilized, and memory
                 *      should be considered fully corrupted (aside from the existence of a
                 *      default-value free memory pointer) after calling this function.
                 *
                 * @param batchTransfers The group of 1155 batch transfers to perform.
                 */
                function _performERC1155BatchTransfers(
                    ConduitBatch1155Transfer[] calldata batchTransfers
                ) internal {
                    // Utilize assembly to perform optimized batch 1155 transfers.
                    assembly {
                        let len := batchTransfers.length
                        // Pointer to first head in the array, which is offset to the struct
                        // at each index. This gets incremented after each loop to avoid
                        // multiplying by 32 to get the offset for each element.
                        let nextElementHeadPtr := batchTransfers.offset
                        // Pointer to beginning of the head of the array. This is the
                        // reference position each offset references. It's held static to
                        // let each loop calculate the data position for an element.
                        let arrayHeadPtr := nextElementHeadPtr
                        // Write the function selector, which will be reused for each call:
                        // safeBatchTransferFrom(address,address,uint256[],uint256[],bytes)
                        mstore(
                            ConduitBatch1155Transfer_from_offset,
                            ERC1155_safeBatchTransferFrom_signature
                        )
                        // Iterate over each batch transfer.
                        for {
                            let i := 0
                        } lt(i, len) {
                            i := add(i, 1)
                        } {
                            // Read the offset to the beginning of the element and add
                            // it to pointer to the beginning of the array head to get
                            // the absolute position of the element in calldata.
                            let elementPtr := add(
                                arrayHeadPtr,
                                calldataload(nextElementHeadPtr)
                            )
                            // Retrieve the token from calldata.
                            let token := calldataload(elementPtr)
                            // If the token has no code, revert.
                            if iszero(extcodesize(token)) {
                                // Store left-padded selector with push4, mem[28:32]
                                mstore(0, NoContract_error_selector)
                                mstore(NoContract_error_account_ptr, token)
                                // revert(abi.encodeWithSignature(
                                //     "NoContract(address)", account
                                // ))
                                revert(
                                    Generic_error_selector_offset,
                                    NoContract_error_length
                                )
                            }
                            // Get the total number of supplied ids.
                            let idsLength := calldataload(
                                add(elementPtr, ConduitBatch1155Transfer_ids_length_offset)
                            )
                            // Determine the expected offset for the amounts array.
                            let expectedAmountsOffset := add(
                                ConduitBatch1155Transfer_amounts_length_baseOffset,
                                shl(OneWordShift, idsLength)
                            )
                            // Validate struct encoding.
                            let invalidEncoding := iszero(
                                and(
                                    // ids.length == amounts.length
                                    eq(
                                        idsLength,
                                        calldataload(add(elementPtr, expectedAmountsOffset))
                                    ),
                                    and(
                                        // ids_offset == 0xa0
                                        eq(
                                            calldataload(
                                                add(
                                                    elementPtr,
                                                    ConduitBatch1155Transfer_ids_head_offset
                                                )
                                            ),
                                            ConduitBatch1155Transfer_ids_length_offset
                                        ),
                                        // amounts_offset == 0xc0 + ids.length*32
                                        eq(
                                            calldataload(
                                                add(
                                                    elementPtr,
                                                    ConduitBatchTransfer_amounts_head_offset
                                                )
                                            ),
                                            expectedAmountsOffset
                                        )
                                    )
                                )
                            )
                            // Revert with an error if the encoding is not valid.
                            if invalidEncoding {
                                // Store left-padded selector with push4, mem[28:32]
                                mstore(
                                    Invalid1155BatchTransferEncoding_ptr,
                                    Invalid1155BatchTransferEncoding_selector
                                )
                                // revert(abi.encodeWithSignature(
                                //     "Invalid1155BatchTransferEncoding()"
                                // ))
                                revert(
                                    Invalid1155BatchTransferEncoding_ptr,
                                    Invalid1155BatchTransferEncoding_length
                                )
                            }
                            // Update the offset position for the next loop
                            nextElementHeadPtr := add(nextElementHeadPtr, OneWord)
                            // Copy the first section of calldata (before dynamic values).
                            calldatacopy(
                                BatchTransfer1155Params_ptr,
                                add(elementPtr, ConduitBatch1155Transfer_from_offset),
                                ConduitBatch1155Transfer_usable_head_size
                            )
                            // Determine size of calldata required for ids and amounts. Note
                            // that the size includes both lengths as well as the data.
                            let idsAndAmountsSize := add(
                                TwoWords,
                                shl(TwoWordsShift, idsLength)
                            )
                            // Update the offset for the data array in memory.
                            mstore(
                                BatchTransfer1155Params_data_head_ptr,
                                add(
                                    BatchTransfer1155Params_ids_length_offset,
                                    idsAndAmountsSize
                                )
                            )
                            // Set the length of the data array in memory to zero.
                            mstore(
                                add(
                                    BatchTransfer1155Params_data_length_basePtr,
                                    idsAndAmountsSize
                                ),
                                0
                            )
                            // Determine the total calldata size for the call to transfer.
                            let transferDataSize := add(
                                BatchTransfer1155Params_calldata_baseSize,
                                idsAndAmountsSize
                            )
                            // Copy second section of calldata (including dynamic values).
                            calldatacopy(
                                BatchTransfer1155Params_ids_length_ptr,
                                add(elementPtr, ConduitBatch1155Transfer_ids_length_offset),
                                idsAndAmountsSize
                            )
                            // Perform the call to transfer 1155 tokens.
                            let success := call(
                                gas(),
                                token,
                                0,
                                ConduitBatch1155Transfer_from_offset, // Data portion start.
                                transferDataSize, // Location of the length of callData.
                                0,
                                0
                            )
                            // If the transfer reverted:
                            if iszero(success) {
                                // If it returned a message, bubble it up as long as
                                // sufficient gas remains to do so:
                                if returndatasize() {
                                    // Ensure that sufficient gas is available to copy
                                    // returndata while expanding memory where necessary.
                                    // Start by computing word size of returndata and
                                    // allocated memory. Round up to the nearest full word.
                                    let returnDataWords := shr(
                                        OneWordShift,
                                        add(returndatasize(), ThirtyOneBytes)
                                    )
                                    // Note: use transferDataSize in place of msize() to
                                    // work around a Yul warning that prevents accessing
                                    // msize directly when the IR pipeline is activated.
                                    // The free memory pointer is not used here because
                                    // this function does almost all memory management
                                    // manually and does not update it, and transferDataSize
                                    // should be the largest memory value used (unless a
                                    // previous batch was larger).
                                    let msizeWords := shr(OneWordShift, transferDataSize)
                                    // Next, compute the cost of the returndatacopy.
                                    let cost := mul(CostPerWord, returnDataWords)
                                    // Then, compute cost of new memory allocation.
                                    if gt(returnDataWords, msizeWords) {
                                        cost := add(
                                            cost,
                                            add(
                                                mul(
                                                    sub(returnDataWords, msizeWords),
                                                    CostPerWord
                                                ),
                                                shr(
                                                    MemoryExpansionCoefficientShift,
                                                    sub(
                                                        mul(
                                                            returnDataWords,
                                                            returnDataWords
                                                        ),
                                                        mul(msizeWords, msizeWords)
                                                    )
                                                )
                                            )
                                        )
                                    }
                                    // Finally, add a small constant and compare to gas
                                    // remaining; bubble up the revert data if enough gas is
                                    // still available.
                                    if lt(add(cost, ExtraGasBuffer), gas()) {
                                        // Copy returndata to memory; overwrite existing.
                                        returndatacopy(0, 0, returndatasize())
                                        // Revert with memory region containing returndata.
                                        revert(0, returndatasize())
                                    }
                                }
                                // Set the error signature.
                                mstore(
                                    0,
                                    ERC1155BatchTransferGenericFailure_error_signature
                                )
                                // Write the token.
                                mstore(ERC1155BatchTransferGenericFailure_token_ptr, token)
                                // Increase the offset to ids by 32.
                                mstore(
                                    BatchTransfer1155Params_ids_head_ptr,
                                    ERC1155BatchTransferGenericFailure_ids_offset
                                )
                                // Increase the offset to amounts by 32.
                                mstore(
                                    BatchTransfer1155Params_amounts_head_ptr,
                                    add(
                                        OneWord,
                                        mload(BatchTransfer1155Params_amounts_head_ptr)
                                    )
                                )
                                // Return modified region. The total size stays the same as
                                // `token` uses the same number of bytes as `data.length`.
                                revert(0, transferDataSize)
                            }
                        }
                        // Reset the free memory pointer to the default value; memory must
                        // be assumed to be dirtied and not reused from this point forward.
                        // Also note that the zero slot is not reset to zero, meaning empty
                        // arrays cannot be safely created or utilized until it is restored.
                        mstore(FreeMemoryPointerSlot, DefaultFreeMemoryPointer)
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.13;
            enum ConduitItemType {
                NATIVE, // unused
                ERC20,
                ERC721,
                ERC1155
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.13;
            import { ConduitItemType } from "./ConduitEnums.sol";
            /**
             * @dev A ConduitTransfer is a struct that contains the information needed for a
             *      conduit to transfer an item from one address to another.
             */
            struct ConduitTransfer {
                ConduitItemType itemType;
                address token;
                address from;
                address to;
                uint256 identifier;
                uint256 amount;
            }
            /**
             * @dev A ConduitBatch1155Transfer is a struct that contains the information
             *      needed for a conduit to transfer a batch of ERC-1155 tokens from one
             *      address to another.
             */
            struct ConduitBatch1155Transfer {
                address token;
                address from;
                address to;
                uint256[] ids;
                uint256[] amounts;
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.17;
            import { OrderParameters } from "./ConsiderationStructs.sol";
            import { GettersAndDerivers } from "./GettersAndDerivers.sol";
            import {
                TokenTransferrerErrors
            } from "../interfaces/TokenTransferrerErrors.sol";
            import { CounterManager } from "./CounterManager.sol";
            import {
                AdditionalRecipient_size_shift,
                AddressDirtyUpperBitThreshold,
                BasicOrder_additionalRecipients_head_cdPtr,
                BasicOrder_additionalRecipients_head_ptr,
                BasicOrder_additionalRecipients_length_cdPtr,
                BasicOrder_basicOrderType_cdPtr,
                BasicOrder_basicOrderType_range,
                BasicOrder_considerationToken_cdPtr,
                BasicOrder_offerer_cdPtr,
                BasicOrder_offerToken_cdPtr,
                BasicOrder_parameters_cdPtr,
                BasicOrder_parameters_ptr,
                BasicOrder_signature_cdPtr,
                BasicOrder_signature_ptr,
                BasicOrder_zone_cdPtr
            } from "./ConsiderationConstants.sol";
            import {
                Error_selector_offset,
                MissingItemAmount_error_length,
                MissingItemAmount_error_selector
            } from "./ConsiderationErrorConstants.sol";
            import {
                _revertInvalidBasicOrderParameterEncoding,
                _revertMissingOriginalConsiderationItems
            } from "./ConsiderationErrors.sol";
            /**
             * @title Assertions
             * @author 0age
             * @notice Assertions contains logic for making various assertions that do not
             *         fit neatly within a dedicated semantic scope.
             */
            contract Assertions is
                GettersAndDerivers,
                CounterManager,
                TokenTransferrerErrors
            {
                /**
                 * @dev Derive and set hashes, reference chainId, and associated domain
                 *      separator during deployment.
                 *
                 * @param conduitController A contract that deploys conduits, or proxies
                 *                          that may optionally be used to transfer approved
                 *                          ERC20/721/1155 tokens.
                 */
                constructor(
                    address conduitController
                ) GettersAndDerivers(conduitController) {}
                /**
                 * @dev Internal view function to ensure that the supplied consideration
                 *      array length on a given set of order parameters is not less than the
                 *      original consideration array length for that order and to retrieve
                 *      the current counter for a given order's offerer and zone and use it
                 *      to derive the order hash.
                 *
                 * @param orderParameters The parameters of the order to hash.
                 *
                 * @return The hash.
                 */
                function _assertConsiderationLengthAndGetOrderHash(
                    OrderParameters memory orderParameters
                ) internal view returns (bytes32) {
                    // Ensure supplied consideration array length is not less than original.
                    _assertConsiderationLengthIsNotLessThanOriginalConsiderationLength(
                        orderParameters.consideration.length,
                        orderParameters.totalOriginalConsiderationItems
                    );
                    // Derive and return order hash using current counter for the offerer.
                    return
                        _deriveOrderHash(
                            orderParameters,
                            _getCounter(orderParameters.offerer)
                        );
                }
                /**
                 * @dev Internal pure function to ensure that the supplied consideration
                 *      array length for an order to be fulfilled is not less than the
                 *      original consideration array length for that order.
                 *
                 * @param suppliedConsiderationItemTotal The number of consideration items
                 *                                       supplied when fulfilling the order.
                 * @param originalConsiderationItemTotal The number of consideration items
                 *                                       supplied on initial order creation.
                 */
                function _assertConsiderationLengthIsNotLessThanOriginalConsiderationLength(
                    uint256 suppliedConsiderationItemTotal,
                    uint256 originalConsiderationItemTotal
                ) internal pure {
                    // Ensure supplied consideration array length is not less than original.
                    if (suppliedConsiderationItemTotal < originalConsiderationItemTotal) {
                        _revertMissingOriginalConsiderationItems();
                    }
                }
                /**
                 * @dev Internal pure function to ensure that a given item amount is not
                 *      zero.
                 *
                 * @param amount The amount to check.
                 */
                function _assertNonZeroAmount(uint256 amount) internal pure {
                    assembly {
                        if iszero(amount) {
                            // Store left-padded selector with push4, mem[28:32] = selector
                            mstore(0, MissingItemAmount_error_selector)
                            // revert(abi.encodeWithSignature("MissingItemAmount()"))
                            revert(Error_selector_offset, MissingItemAmount_error_length)
                        }
                    }
                }
                /**
                 * @dev Internal pure function to validate calldata offsets for dynamic
                 *      types in BasicOrderParameters and other parameters. This ensures
                 *      that functions using the calldata object normally will be using the
                 *      same data as the assembly functions and that values that are bound
                 *      to a given range are within that range. Note that no parameters are
                 *      supplied as all basic order functions use the same calldata
                 *      encoding.
                 */
                function _assertValidBasicOrderParameters() internal pure {
                    // Declare a boolean designating basic order parameter offset validity.
                    bool validOffsets;
                    // Utilize assembly in order to read offset data directly from calldata.
                    assembly {
                        /*
                         * Checks:
                         * 1. Order parameters struct offset == 0x20
                         * 2. Additional recipients arr offset == 0x240
                         * 3. Signature offset == 0x260 + (recipients.length * 0x40)
                         * 4. BasicOrderType between 0 and 23 (i.e. < 24)
                         * 5. Offerer, zone, offer token, and consideration token have no
                         *    upper dirty bits — each argument is type(uint160).max or less
                         */
                        validOffsets := and(
                            and(
                                and(
                                    // Order parameters at cd 0x04 must have offset of 0x20.
                                    eq(
                                        calldataload(BasicOrder_parameters_cdPtr),
                                        BasicOrder_parameters_ptr
                                    ),
                                    // Additional recipients (cd 0x224) arr offset == 0x240.
                                    eq(
                                        calldataload(
                                            BasicOrder_additionalRecipients_head_cdPtr
                                        ),
                                        BasicOrder_additionalRecipients_head_ptr
                                    )
                                ),
                                // Signature offset == 0x260 + (recipients.length * 0x40).
                                eq(
                                    // Load signature offset from calldata 0x244.
                                    calldataload(BasicOrder_signature_cdPtr),
                                    // Expected offset is start of recipients + len * 64.
                                    add(
                                        BasicOrder_signature_ptr,
                                        shl(
                                            // Each additional recipient has length of 0x40.
                                            AdditionalRecipient_size_shift,
                                            // Additional recipients length at cd 0x264.
                                            calldataload(
                                                BasicOrder_additionalRecipients_length_cdPtr
                                            )
                                        )
                                    )
                                )
                            ),
                            and(
                                // Ensure BasicOrderType parameter is less than 0x18.
                                lt(
                                    // BasicOrderType parameter at calldata offset 0x124.
                                    calldataload(BasicOrder_basicOrderType_cdPtr),
                                    // Value should be less than 24.
                                    BasicOrder_basicOrderType_range
                                ),
                                // Ensure no dirty upper bits are present on offerer, zone,
                                // offer token, or consideration token.
                                lt(
                                    or(
                                        or(
                                            // Offerer parameter at calldata offset 0x84.
                                            calldataload(BasicOrder_offerer_cdPtr),
                                            // Zone parameter at calldata offset 0xa4.
                                            calldataload(BasicOrder_zone_cdPtr)
                                        ),
                                        or(
                                            // Offer token parameter at cd offset 0xc4.
                                            calldataload(BasicOrder_offerToken_cdPtr),
                                            // Consideration token parameter at offset 0x24.
                                            calldataload(
                                                BasicOrder_considerationToken_cdPtr
                                            )
                                        )
                                    ),
                                    AddressDirtyUpperBitThreshold
                                )
                            )
                        )
                    }
                    // Revert with an error if basic order parameter offsets are invalid.
                    if (!validOffsets) {
                        _revertInvalidBasicOrderParameterEncoding();
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.17;
            import {
                SignatureVerificationErrors
            } from "../interfaces/SignatureVerificationErrors.sol";
            import { LowLevelHelpers } from "./LowLevelHelpers.sol";
            import {
                ECDSA_MaxLength,
                ECDSA_signature_s_offset,
                ECDSA_signature_v_offset,
                ECDSA_twentySeventhAndTwentyEighthBytesSet,
                Ecrecover_args_size,
                Ecrecover_precompile,
                EIP1271_isValidSignature_calldata_baseLength,
                EIP1271_isValidSignature_digest_negativeOffset,
                EIP1271_isValidSignature_selector_negativeOffset,
                EIP1271_isValidSignature_selector,
                EIP1271_isValidSignature_signature_head_offset,
                EIP2098_allButHighestBitMask,
                MaxUint8,
                OneWord,
                Signature_lower_v
            } from "./ConsiderationConstants.sol";
            import {
                BadContractSignature_error_length,
                BadContractSignature_error_selector,
                BadSignatureV_error_length,
                BadSignatureV_error_selector,
                BadSignatureV_error_v_ptr,
                Error_selector_offset,
                InvalidSignature_error_length,
                InvalidSignature_error_selector,
                InvalidSigner_error_length,
                InvalidSigner_error_selector
            } from "./ConsiderationErrorConstants.sol";
            /**
             * @title SignatureVerification
             * @author 0age
             * @notice SignatureVerification contains logic for verifying signatures.
             */
            contract SignatureVerification is SignatureVerificationErrors, LowLevelHelpers {
                /**
                 * @dev Internal view function to verify the signature of an order. An
                 *      ERC-1271 fallback will be attempted if either the signature length
                 *      is not 64 or 65 bytes or if the recovered signer does not match the
                 *      supplied signer.
                 *
                 * @param signer                  The signer for the order.
                 * @param digest                  The digest to verify signature against.
                 * @param originalDigest          The original digest to verify signature
                 *                                against.
                 * @param originalSignatureLength The original signature length.
                 * @param signature               A signature from the signer indicating
                 *                                that the order has been approved.
                 */
                function _assertValidSignature(
                    address signer,
                    bytes32 digest,
                    bytes32 originalDigest,
                    uint256 originalSignatureLength,
                    bytes memory signature
                ) internal view {
                    // Declare value for ecrecover equality or 1271 call success status.
                    bool success;
                    // Utilize assembly to perform optimized signature verification check.
                    assembly {
                        // Ensure that first word of scratch space is empty.
                        mstore(0, 0)
                        // Get the length of the signature.
                        let signatureLength := mload(signature)
                        // Get the pointer to the value preceding the signature length.
                        // This will be used for temporary memory overrides - either the
                        // signature head for isValidSignature or the digest for ecrecover.
                        let wordBeforeSignaturePtr := sub(signature, OneWord)
                        // Cache the current value behind the signature to restore it later.
                        let cachedWordBeforeSignature := mload(wordBeforeSignaturePtr)
                        // Declare lenDiff + recoveredSigner scope to manage stack pressure.
                        {
                            // Take the difference between the max ECDSA signature length
                            // and the actual signature length. Overflow desired for any
                            // values > 65. If the diff is not 0 or 1, it is not a valid
                            // ECDSA signature - move on to EIP1271 check.
                            let lenDiff := sub(ECDSA_MaxLength, signatureLength)
                            // Declare variable for recovered signer.
                            let recoveredSigner
                            // If diff is 0 or 1, it may be an ECDSA signature.
                            // Try to recover signer.
                            if iszero(gt(lenDiff, 1)) {
                                // Read the signature `s` value.
                                let originalSignatureS := mload(
                                    add(signature, ECDSA_signature_s_offset)
                                )
                                // Read the first byte of the word after `s`. If the
                                // signature is 65 bytes, this will be the real `v` value.
                                // If not, it will need to be modified - doing it this way
                                // saves an extra condition.
                                let v := byte(
                                    0,
                                    mload(add(signature, ECDSA_signature_v_offset))
                                )
                                // If lenDiff is 1, parse 64-byte signature as ECDSA.
                                if lenDiff {
                                    // Extract yParity from highest bit of vs and add 27 to
                                    // get v.
                                    v := add(
                                        shr(MaxUint8, originalSignatureS),
                                        Signature_lower_v
                                    )
                                    // Extract canonical s from vs, all but the highest bit.
                                    // Temporarily overwrite the original `s` value in the
                                    // signature.
                                    mstore(
                                        add(signature, ECDSA_signature_s_offset),
                                        and(
                                            originalSignatureS,
                                            EIP2098_allButHighestBitMask
                                        )
                                    )
                                }
                                // Temporarily overwrite the signature length with `v` to
                                // conform to the expected input for ecrecover.
                                mstore(signature, v)
                                // Temporarily overwrite the word before the length with
                                // `digest` to conform to the expected input for ecrecover.
                                mstore(wordBeforeSignaturePtr, digest)
                                // Attempt to recover the signer for the given signature. Do
                                // not check the call status as ecrecover will return a null
                                // address if the signature is invalid.
                                pop(
                                    staticcall(
                                        gas(),
                                        Ecrecover_precompile, // Call ecrecover precompile.
                                        wordBeforeSignaturePtr, // Use data memory location.
                                        Ecrecover_args_size, // Size of digest, v, r, and s.
                                        0, // Write result to scratch space.
                                        OneWord // Provide size of returned result.
                                    )
                                )
                                // Restore cached word before signature.
                                mstore(wordBeforeSignaturePtr, cachedWordBeforeSignature)
                                // Restore cached signature length.
                                mstore(signature, signatureLength)
                                // Restore cached signature `s` value.
                                mstore(
                                    add(signature, ECDSA_signature_s_offset),
                                    originalSignatureS
                                )
                                // Read the recovered signer from the buffer given as return
                                // space for ecrecover.
                                recoveredSigner := mload(0)
                            }
                            // Set success to true if the signature provided was a valid
                            // ECDSA signature and the signer is not the null address. Use
                            // gt instead of direct as success is used outside of assembly.
                            success := and(eq(signer, recoveredSigner), gt(signer, 0))
                        }
                        // If the signature was not verified with ecrecover, try EIP1271.
                        if iszero(success) {
                            // Reset the original signature length.
                            mstore(signature, originalSignatureLength)
                            // Temporarily overwrite the word before the signature length
                            // and use it as the head of the signature input to
                            // `isValidSignature`, which has a value of 64.
                            mstore(
                                wordBeforeSignaturePtr,
                                EIP1271_isValidSignature_signature_head_offset
                            )
                            // Get pointer to use for the selector of `isValidSignature`.
                            let selectorPtr := sub(
                                signature,
                                EIP1271_isValidSignature_selector_negativeOffset
                            )
                            // Cache the value currently stored at the selector pointer.
                            let cachedWordOverwrittenBySelector := mload(selectorPtr)
                            // Cache the value currently stored at the digest pointer.
                            let cachedWordOverwrittenByDigest := mload(
                                sub(
                                    signature,
                                    EIP1271_isValidSignature_digest_negativeOffset
                                )
                            )
                            // Write the selector first, since it overlaps the digest.
                            mstore(selectorPtr, EIP1271_isValidSignature_selector)
                            // Next, write the original digest.
                            mstore(
                                sub(
                                    signature,
                                    EIP1271_isValidSignature_digest_negativeOffset
                                ),
                                originalDigest
                            )
                            // Call signer with `isValidSignature` to validate signature.
                            success := staticcall(
                                gas(),
                                signer,
                                selectorPtr,
                                add(
                                    originalSignatureLength,
                                    EIP1271_isValidSignature_calldata_baseLength
                                ),
                                0,
                                OneWord
                            )
                            // Determine if the signature is valid on successful calls.
                            if success {
                                // If first word of scratch space does not contain EIP-1271
                                // signature selector, revert.
                                if iszero(eq(mload(0), EIP1271_isValidSignature_selector)) {
                                    // Revert with bad 1271 signature if signer has code.
                                    if extcodesize(signer) {
                                        // Bad contract signature.
                                        // Store left-padded selector with push4, mem[28:32]
                                        mstore(0, BadContractSignature_error_selector)
                                        // revert(abi.encodeWithSignature(
                                        //     "BadContractSignature()"
                                        // ))
                                        revert(
                                            Error_selector_offset,
                                            BadContractSignature_error_length
                                        )
                                    }
                                    // Check if signature length was invalid.
                                    if gt(sub(ECDSA_MaxLength, signatureLength), 1) {
                                        // Revert with generic invalid signature error.
                                        // Store left-padded selector with push4, mem[28:32]
                                        mstore(0, InvalidSignature_error_selector)
                                        // revert(abi.encodeWithSignature(
                                        //     "InvalidSignature()"
                                        // ))
                                        revert(
                                            Error_selector_offset,
                                            InvalidSignature_error_length
                                        )
                                    }
                                    // Check if v was invalid.
                                    if and(
                                        eq(signatureLength, ECDSA_MaxLength),
                                        iszero(
                                            byte(
                                                byte(
                                                    0,
                                                    mload(
                                                        add(
                                                            signature,
                                                            ECDSA_signature_v_offset
                                                        )
                                                    )
                                                ),
                                                ECDSA_twentySeventhAndTwentyEighthBytesSet
                                            )
                                        )
                                    ) {
                                        // Revert with invalid v value.
                                        // Store left-padded selector with push4, mem[28:32]
                                        mstore(0, BadSignatureV_error_selector)
                                        mstore(
                                            BadSignatureV_error_v_ptr,
                                            byte(
                                                0,
                                                mload(
                                                    add(signature, ECDSA_signature_v_offset)
                                                )
                                            )
                                        )
                                        // revert(abi.encodeWithSignature(
                                        //     "BadSignatureV(uint8)", v
                                        // ))
                                        revert(
                                            Error_selector_offset,
                                            BadSignatureV_error_length
                                        )
                                    }
                                    // Revert with generic invalid signer error message.
                                    // Store left-padded selector with push4, mem[28:32]
                                    mstore(0, InvalidSigner_error_selector)
                                    // revert(abi.encodeWithSignature("InvalidSigner()"))
                                    revert(
                                        Error_selector_offset,
                                        InvalidSigner_error_length
                                    )
                                }
                            }
                            // Restore the cached values overwritten by selector, digest and
                            // signature head.
                            mstore(wordBeforeSignaturePtr, cachedWordBeforeSignature)
                            mstore(selectorPtr, cachedWordOverwrittenBySelector)
                            mstore(
                                sub(
                                    signature,
                                    EIP1271_isValidSignature_digest_negativeOffset
                                ),
                                cachedWordOverwrittenByDigest
                            )
                        }
                    }
                    // If the call failed...
                    if (!success) {
                        // Revert and pass reason along if one was returned.
                        _revertWithReasonIfOneIsReturned();
                        // Otherwise, revert with error indicating bad contract signature.
                        assembly {
                            // Store left-padded selector with push4, mem[28:32] = selector
                            mstore(0, BadContractSignature_error_selector)
                            // revert(abi.encodeWithSignature("BadContractSignature()"))
                            revert(Error_selector_offset, BadContractSignature_error_length)
                        }
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.17;
            import {
                ConsiderationEventsAndErrors
            } from "../interfaces/ConsiderationEventsAndErrors.sol";
            import { ReentrancyGuard } from "./ReentrancyGuard.sol";
            import {
                Counter_blockhash_shift,
                OneWord,
                TwoWords
            } from "./ConsiderationConstants.sol";
            /**
             * @title CounterManager
             * @author 0age
             * @notice CounterManager contains a storage mapping and related functionality
             *         for retrieving and incrementing a per-offerer counter.
             */
            contract CounterManager is ConsiderationEventsAndErrors, ReentrancyGuard {
                // Only orders signed using an offerer's current counter are fulfillable.
                mapping(address => uint256) private _counters;
                /**
                 * @dev Internal function to cancel all orders from a given offerer in bulk
                 *      by incrementing a counter by a large, quasi-random interval. Note
                 *      that only the offerer may increment the counter. Note that the
                 *      counter is incremented by a large, quasi-random interval, which
                 *      makes it infeasible to "activate" signed orders by incrementing the
                 *      counter.  This activation functionality can be achieved instead with
                 *      restricted orders or contract orders.
                 *
                 * @return newCounter The new counter.
                 */
                function _incrementCounter() internal returns (uint256 newCounter) {
                    // Ensure that the reentrancy guard is not currently set.
                    _assertNonReentrant();
                    // Utilize assembly to access counters storage mapping directly. Skip
                    // overflow check as counter cannot be incremented that far.
                    assembly {
                        // Use second half of previous block hash as a quasi-random number.
                        let quasiRandomNumber := shr(
                            Counter_blockhash_shift,
                            blockhash(sub(number(), 1))
                        )
                        // Write the caller to scratch space.
                        mstore(0, caller())
                        // Write the storage slot for _counters to scratch space.
                        mstore(OneWord, _counters.slot)
                        // Derive the storage pointer for the counter value.
                        let storagePointer := keccak256(0, TwoWords)
                        // Derive new counter value using random number and original value.
                        newCounter := add(quasiRandomNumber, sload(storagePointer))
                        // Store the updated counter value.
                        sstore(storagePointer, newCounter)
                    }
                    // Emit an event containing the new counter.
                    emit CounterIncremented(newCounter, msg.sender);
                }
                /**
                 * @dev Internal view function to retrieve the current counter for a given
                 *      offerer.
                 *
                 * @param offerer The offerer in question.
                 *
                 * @return currentCounter The current counter.
                 */
                function _getCounter(
                    address offerer
                ) internal view returns (uint256 currentCounter) {
                    // Return the counter for the supplied offerer.
                    currentCounter = _counters[offerer];
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.13;
            /**
             * @title TokenTransferrerErrors
             */
            interface TokenTransferrerErrors {
                /**
                 * @dev Revert with an error when an ERC721 transfer with amount other than
                 *      one is attempted.
                 *
                 * @param amount The amount of the ERC721 tokens to transfer.
                 */
                error InvalidERC721TransferAmount(uint256 amount);
                /**
                 * @dev Revert with an error when attempting to fulfill an order where an
                 *      item has an amount of zero.
                 */
                error MissingItemAmount();
                /**
                 * @dev Revert with an error when attempting to fulfill an order where an
                 *      item has unused parameters. This includes both the token and the
                 *      identifier parameters for native transfers as well as the identifier
                 *      parameter for ERC20 transfers. Note that the conduit does not
                 *      perform this check, leaving it up to the calling channel to enforce
                 *      when desired.
                 */
                error UnusedItemParameters();
                /**
                 * @dev Revert with an error when an ERC20, ERC721, or ERC1155 token
                 *      transfer reverts.
                 *
                 * @param token      The token for which the transfer was attempted.
                 * @param from       The source of the attempted transfer.
                 * @param to         The recipient of the attempted transfer.
                 * @param identifier The identifier for the attempted transfer.
                 * @param amount     The amount for the attempted transfer.
                 */
                error TokenTransferGenericFailure(
                    address token,
                    address from,
                    address to,
                    uint256 identifier,
                    uint256 amount
                );
                /**
                 * @dev Revert with an error when a batch ERC1155 token transfer reverts.
                 *
                 * @param token       The token for which the transfer was attempted.
                 * @param from        The source of the attempted transfer.
                 * @param to          The recipient of the attempted transfer.
                 * @param identifiers The identifiers for the attempted transfer.
                 * @param amounts     The amounts for the attempted transfer.
                 */
                error ERC1155BatchTransferGenericFailure(
                    address token,
                    address from,
                    address to,
                    uint256[] identifiers,
                    uint256[] amounts
                );
                /**
                 * @dev Revert with an error when an ERC20 token transfer returns a falsey
                 *      value.
                 *
                 * @param token      The token for which the ERC20 transfer was attempted.
                 * @param from       The source of the attempted ERC20 transfer.
                 * @param to         The recipient of the attempted ERC20 transfer.
                 * @param amount     The amount for the attempted ERC20 transfer.
                 */
                error BadReturnValueFromERC20OnTransfer(
                    address token,
                    address from,
                    address to,
                    uint256 amount
                );
                /**
                 * @dev Revert with an error when an account being called as an assumed
                 *      contract does not have code and returns no data.
                 *
                 * @param account The account that should contain code.
                 */
                error NoContract(address account);
                /**
                 * @dev Revert with an error when attempting to execute an 1155 batch
                 *      transfer using calldata not produced by default ABI encoding or with
                 *      different lengths for ids and amounts arrays.
                 */
                error Invalid1155BatchTransferEncoding();
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.17;
            import { OrderParameters } from "./ConsiderationStructs.sol";
            import { ConsiderationBase } from "./ConsiderationBase.sol";
            import {
                Create2AddressDerivation_length,
                Create2AddressDerivation_ptr,
                EIP_712_PREFIX,
                EIP712_ConsiderationItem_size,
                EIP712_DigestPayload_size,
                EIP712_DomainSeparator_offset,
                EIP712_OfferItem_size,
                EIP712_Order_size,
                EIP712_OrderHash_offset,
                FreeMemoryPointerSlot,
                information_conduitController_offset,
                information_domainSeparator_offset,
                information_length,
                information_version_cd_offset,
                information_version_offset,
                information_versionLengthPtr,
                information_versionWithLength,
                MaskOverByteTwelve,
                MaskOverLastTwentyBytes,
                OneWord,
                OneWordShift,
                OrderParameters_consideration_head_offset,
                OrderParameters_counter_offset,
                OrderParameters_offer_head_offset,
                TwoWords
            } from "./ConsiderationConstants.sol";
            /**
             * @title GettersAndDerivers
             * @author 0age
             * @notice ConsiderationInternal contains pure and internal view functions
             *         related to getting or deriving various values.
             */
            contract GettersAndDerivers is ConsiderationBase {
                /**
                 * @dev Derive and set hashes, reference chainId, and associated domain
                 *      separator during deployment.
                 *
                 * @param conduitController A contract that deploys conduits, or proxies
                 *                          that may optionally be used to transfer approved
                 *                          ERC20/721/1155 tokens.
                 */
                constructor(
                    address conduitController
                ) ConsiderationBase(conduitController) {}
                /**
                 * @dev Internal view function to derive the order hash for a given order.
                 *      Note that only the original consideration items are included in the
                 *      order hash, as additional consideration items may be supplied by the
                 *      caller.
                 *
                 * @param orderParameters The parameters of the order to hash.
                 * @param counter         The counter of the order to hash.
                 *
                 * @return orderHash The hash.
                 */
                function _deriveOrderHash(
                    OrderParameters memory orderParameters,
                    uint256 counter
                ) internal view returns (bytes32 orderHash) {
                    // Get length of original consideration array and place it on the stack.
                    uint256 originalConsiderationLength = (
                        orderParameters.totalOriginalConsiderationItems
                    );
                    /*
                     * Memory layout for an array of structs (dynamic or not) is similar
                     * to ABI encoding of dynamic types, with a head segment followed by
                     * a data segment. The main difference is that the head of an element
                     * is a memory pointer rather than an offset.
                     */
                    // Declare a variable for the derived hash of the offer array.
                    bytes32 offerHash;
                    // Read offer item EIP-712 typehash from runtime code & place on stack.
                    bytes32 typeHash = _OFFER_ITEM_TYPEHASH;
                    // Utilize assembly so that memory regions can be reused across hashes.
                    assembly {
                        // Retrieve the free memory pointer and place on the stack.
                        let hashArrPtr := mload(FreeMemoryPointerSlot)
                        // Get the pointer to the offers array.
                        let offerArrPtr := mload(
                            add(orderParameters, OrderParameters_offer_head_offset)
                        )
                        // Load the length.
                        let offerLength := mload(offerArrPtr)
                        // Set the pointer to the first offer's head.
                        offerArrPtr := add(offerArrPtr, OneWord)
                        // Iterate over the offer items.
                        for { let i := 0 } lt(i, offerLength) {
                            i := add(i, 1)
                        } {
                            // Read the pointer to the offer data and subtract one word
                            // to get typeHash pointer.
                            let ptr := sub(mload(offerArrPtr), OneWord)
                            // Read the current value before the offer data.
                            let value := mload(ptr)
                            // Write the type hash to the previous word.
                            mstore(ptr, typeHash)
                            // Take the EIP712 hash and store it in the hash array.
                            mstore(hashArrPtr, keccak256(ptr, EIP712_OfferItem_size))
                            // Restore the previous word.
                            mstore(ptr, value)
                            // Increment the array pointers by one word.
                            offerArrPtr := add(offerArrPtr, OneWord)
                            hashArrPtr := add(hashArrPtr, OneWord)
                        }
                        // Derive the offer hash using the hashes of each item.
                        offerHash := keccak256(
                            mload(FreeMemoryPointerSlot),
                            shl(OneWordShift, offerLength)
                        )
                    }
                    // Declare a variable for the derived hash of the consideration array.
                    bytes32 considerationHash;
                    // Read consideration item typehash from runtime code & place on stack.
                    typeHash = _CONSIDERATION_ITEM_TYPEHASH;
                    // Utilize assembly so that memory regions can be reused across hashes.
                    assembly {
                        // Retrieve the free memory pointer and place on the stack.
                        let hashArrPtr := mload(FreeMemoryPointerSlot)
                        // Get the pointer to the consideration array.
                        let considerationArrPtr := add(
                            mload(
                                add(
                                    orderParameters,
                                    OrderParameters_consideration_head_offset
                                )
                            ),
                            OneWord
                        )
                        // Iterate over the consideration items (not including tips).
                        for { let i := 0 } lt(i, originalConsiderationLength) {
                            i := add(i, 1)
                        } {
                            // Read the pointer to the consideration data and subtract one
                            // word to get typeHash pointer.
                            let ptr := sub(mload(considerationArrPtr), OneWord)
                            // Read the current value before the consideration data.
                            let value := mload(ptr)
                            // Write the type hash to the previous word.
                            mstore(ptr, typeHash)
                            // Take the EIP712 hash and store it in the hash array.
                            mstore(
                                hashArrPtr,
                                keccak256(ptr, EIP712_ConsiderationItem_size)
                            )
                            // Restore the previous word.
                            mstore(ptr, value)
                            // Increment the array pointers by one word.
                            considerationArrPtr := add(considerationArrPtr, OneWord)
                            hashArrPtr := add(hashArrPtr, OneWord)
                        }
                        // Derive the consideration hash using the hashes of each item.
                        considerationHash := keccak256(
                            mload(FreeMemoryPointerSlot),
                            shl(OneWordShift, originalConsiderationLength)
                        )
                    }
                    // Read order item EIP-712 typehash from runtime code & place on stack.
                    typeHash = _ORDER_TYPEHASH;
                    // Utilize assembly to access derived hashes & other arguments directly.
                    assembly {
                        // Retrieve pointer to the region located just behind parameters.
                        let typeHashPtr := sub(orderParameters, OneWord)
                        // Store the value at that pointer location to restore later.
                        let previousValue := mload(typeHashPtr)
                        // Store the order item EIP-712 typehash at the typehash location.
                        mstore(typeHashPtr, typeHash)
                        // Retrieve the pointer for the offer array head.
                        let offerHeadPtr := add(
                            orderParameters,
                            OrderParameters_offer_head_offset
                        )
                        // Retrieve the data pointer referenced by the offer head.
                        let offerDataPtr := mload(offerHeadPtr)
                        // Store the offer hash at the retrieved memory location.
                        mstore(offerHeadPtr, offerHash)
                        // Retrieve the pointer for the consideration array head.
                        let considerationHeadPtr := add(
                            orderParameters,
                            OrderParameters_consideration_head_offset
                        )
                        // Retrieve the data pointer referenced by the consideration head.
                        let considerationDataPtr := mload(considerationHeadPtr)
                        // Store the consideration hash at the retrieved memory location.
                        mstore(considerationHeadPtr, considerationHash)
                        // Retrieve the pointer for the counter.
                        let counterPtr := add(
                            orderParameters,
                            OrderParameters_counter_offset
                        )
                        // Store the counter at the retrieved memory location.
                        mstore(counterPtr, counter)
                        // Derive the order hash using the full range of order parameters.
                        orderHash := keccak256(typeHashPtr, EIP712_Order_size)
                        // Restore the value previously held at typehash pointer location.
                        mstore(typeHashPtr, previousValue)
                        // Restore offer data pointer at the offer head pointer location.
                        mstore(offerHeadPtr, offerDataPtr)
                        // Restore consideration data pointer at the consideration head ptr.
                        mstore(considerationHeadPtr, considerationDataPtr)
                        // Restore consideration item length at the counter pointer.
                        mstore(counterPtr, originalConsiderationLength)
                    }
                }
                /**
                 * @dev Internal view function to derive the address of a given conduit
                 *      using a corresponding conduit key.
                 *
                 * @param conduitKey A bytes32 value indicating what corresponding conduit,
                 *                   if any, to source token approvals from. This value is
                 *                   the "salt" parameter supplied by the deployer (i.e. the
                 *                   conduit controller) when deploying the given conduit.
                 *
                 * @return conduit The address of the conduit associated with the given
                 *                 conduit key.
                 */
                function _deriveConduit(
                    bytes32 conduitKey
                ) internal view returns (address conduit) {
                    // Read conduit controller address from runtime and place on the stack.
                    address conduitController = address(_CONDUIT_CONTROLLER);
                    // Read conduit creation code hash from runtime and place on the stack.
                    bytes32 conduitCreationCodeHash = _CONDUIT_CREATION_CODE_HASH;
                    // Leverage scratch space to perform an efficient hash.
                    assembly {
                        // Retrieve the free memory pointer; it will be replaced afterwards.
                        let freeMemoryPointer := mload(FreeMemoryPointerSlot)
                        // Place the control character and the conduit controller in scratch
                        // space; note that eleven bytes at the beginning are left unused.
                        mstore(0, or(MaskOverByteTwelve, conduitController))
                        // Place the conduit key in the next region of scratch space.
                        mstore(OneWord, conduitKey)
                        // Place conduit creation code hash in free memory pointer location.
                        mstore(TwoWords, conduitCreationCodeHash)
                        // Derive conduit by hashing and applying a mask over last 20 bytes.
                        conduit := and(
                            // Hash the relevant region.
                            keccak256(
                                // The region starts at memory pointer 11.
                                Create2AddressDerivation_ptr,
                                // The region is 85 bytes long (1 + 20 + 32 + 32).
                                Create2AddressDerivation_length
                            ),
                            // The address equals the last twenty bytes of the hash.
                            MaskOverLastTwentyBytes
                        )
                        // Restore the free memory pointer.
                        mstore(FreeMemoryPointerSlot, freeMemoryPointer)
                    }
                }
                /**
                 * @dev Internal view function to get the EIP-712 domain separator. If the
                 *      chainId matches the chainId set on deployment, the cached domain
                 *      separator will be returned; otherwise, it will be derived from
                 *      scratch.
                 *
                 * @return The domain separator.
                 */
                function _domainSeparator() internal view returns (bytes32) {
                    return block.chainid == _CHAIN_ID
                        ? _DOMAIN_SEPARATOR
                        : _deriveDomainSeparator();
                }
                /**
                 * @dev Internal view function to retrieve configuration information for
                 *      this contract.
                 *
                 * @return The contract version.
                 * @return The domain separator for this contract.
                 * @return The conduit Controller set for this contract.
                 */
                function _information()
                    internal
                    view
                    returns (
                        string memory /* version */,
                        bytes32 /* domainSeparator */,
                        address /* conduitController */
                    )
                {
                    // Derive the domain separator.
                    bytes32 domainSeparator = _domainSeparator();
                    // Declare variable as immutables cannot be accessed within assembly.
                    address conduitController = address(_CONDUIT_CONTROLLER);
                    // Return the version, domain separator, and conduit controller.
                    assembly {
                        mstore(information_version_offset, information_version_cd_offset)
                        mstore(information_domainSeparator_offset, domainSeparator)
                        mstore(information_conduitController_offset, conduitController)
                        mstore(information_versionLengthPtr, information_versionWithLength)
                        return(information_version_offset, information_length)
                    }
                }
                /**
                 * @dev Internal pure function to efficiently derive an digest to sign for
                 *      an order in accordance with EIP-712.
                 *
                 * @param domainSeparator The domain separator.
                 * @param orderHash       The order hash.
                 *
                 * @return value The hash.
                 */
                function _deriveEIP712Digest(
                    bytes32 domainSeparator,
                    bytes32 orderHash
                ) internal pure returns (bytes32 value) {
                    // Leverage scratch space to perform an efficient hash.
                    assembly {
                        // Place the EIP-712 prefix at the start of scratch space.
                        mstore(0, EIP_712_PREFIX)
                        // Place the domain separator in the next region of scratch space.
                        mstore(EIP712_DomainSeparator_offset, domainSeparator)
                        // Place the order hash in scratch space, spilling into the first
                        // two bytes of the free memory pointer — this should never be set
                        // as memory cannot be expanded to that size, and will be zeroed out
                        // after the hash is performed.
                        mstore(EIP712_OrderHash_offset, orderHash)
                        // Hash the relevant region (65 bytes).
                        value := keccak256(0, EIP712_DigestPayload_size)
                        // Clear out the dirtied bits in the memory pointer.
                        mstore(EIP712_OrderHash_offset, 0)
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.13;
            import {
                OrderParameters,
                ReceivedItem,
                SpentItem
            } from "../lib/ConsiderationStructs.sol";
            /**
             * @title ConsiderationEventsAndErrors
             * @author 0age
             * @notice ConsiderationEventsAndErrors contains all events and errors.
             */
            interface ConsiderationEventsAndErrors {
                /**
                 * @dev Emit an event whenever an order is successfully fulfilled.
                 *
                 * @param orderHash     The hash of the fulfilled order.
                 * @param offerer       The offerer of the fulfilled order.
                 * @param zone          The zone of the fulfilled order.
                 * @param recipient     The recipient of each spent item on the fulfilled
                 *                      order, or the null address if there is no specific
                 *                      fulfiller (i.e. the order is part of a group of
                 *                      orders). Defaults to the caller unless explicitly
                 *                      specified otherwise by the fulfiller.
                 * @param offer         The offer items spent as part of the order.
                 * @param consideration The consideration items received as part of the
                 *                      order along with the recipients of each item.
                 */
                event OrderFulfilled(
                    bytes32 orderHash,
                    address indexed offerer,
                    address indexed zone,
                    address recipient,
                    SpentItem[] offer,
                    ReceivedItem[] consideration
                );
                /**
                 * @dev Emit an event whenever an order is successfully cancelled.
                 *
                 * @param orderHash The hash of the cancelled order.
                 * @param offerer   The offerer of the cancelled order.
                 * @param zone      The zone of the cancelled order.
                 */
                event OrderCancelled(
                    bytes32 orderHash,
                    address indexed offerer,
                    address indexed zone
                );
                /**
                 * @dev Emit an event whenever an order is explicitly validated. Note that
                 *      this event will not be emitted on partial fills even though they do
                 *      validate the order as part of partial fulfillment.
                 *
                 * @param orderHash        The hash of the validated order.
                 * @param orderParameters  The parameters of the validated order.
                 */
                event OrderValidated(bytes32 orderHash, OrderParameters orderParameters);
                /**
                 * @dev Emit an event whenever one or more orders are matched using either
                 *      matchOrders or matchAdvancedOrders.
                 *
                 * @param orderHashes The order hashes of the matched orders.
                 */
                event OrdersMatched(bytes32[] orderHashes);
                /**
                 * @dev Emit an event whenever a counter for a given offerer is incremented.
                 *
                 * @param newCounter The new counter for the offerer.
                 * @param offerer    The offerer in question.
                 */
                event CounterIncremented(uint256 newCounter, address indexed offerer);
                /**
                 * @dev Revert with an error when attempting to fill an order that has
                 *      already been fully filled.
                 *
                 * @param orderHash The order hash on which a fill was attempted.
                 */
                error OrderAlreadyFilled(bytes32 orderHash);
                /**
                 * @dev Revert with an error when attempting to fill an order outside the
                 *      specified start time and end time.
                 *
                 * @param startTime The time at which the order becomes active.
                 * @param endTime   The time at which the order becomes inactive.
                 */
                error InvalidTime(uint256 startTime, uint256 endTime);
                /**
                 * @dev Revert with an error when attempting to fill an order referencing an
                 *      invalid conduit (i.e. one that has not been deployed).
                 */
                error InvalidConduit(bytes32 conduitKey, address conduit);
                /**
                 * @dev Revert with an error when an order is supplied for fulfillment with
                 *      a consideration array that is shorter than the original array.
                 */
                error MissingOriginalConsiderationItems();
                /**
                 * @dev Revert with an error when an order is validated and the length of
                 *      the consideration array is not equal to the supplied total original
                 *      consideration items value. This error is also thrown when contract
                 *      orders supply a total original consideration items value that does
                 *      not match the supplied consideration array length.
                 */
                error ConsiderationLengthNotEqualToTotalOriginal();
                /**
                 * @dev Revert with an error when a call to a conduit fails with revert data
                 *      that is too expensive to return.
                 */
                error InvalidCallToConduit(address conduit);
                /**
                 * @dev Revert with an error if a consideration amount has not been fully
                 *      zeroed out after applying all fulfillments.
                 *
                 * @param orderIndex         The index of the order with the consideration
                 *                           item with a shortfall.
                 * @param considerationIndex The index of the consideration item on the
                 *                           order.
                 * @param shortfallAmount    The unfulfilled consideration amount.
                 */
                error ConsiderationNotMet(
                    uint256 orderIndex,
                    uint256 considerationIndex,
                    uint256 shortfallAmount
                );
                /**
                 * @dev Revert with an error when insufficient native tokens are supplied as
                 *      part of msg.value when fulfilling orders.
                 */
                error InsufficientNativeTokensSupplied();
                /**
                 * @dev Revert with an error when a native token transfer reverts.
                 */
                error NativeTokenTransferGenericFailure(address account, uint256 amount);
                /**
                 * @dev Revert with an error when a partial fill is attempted on an order
                 *      that does not specify partial fill support in its order type.
                 */
                error PartialFillsNotEnabledForOrder();
                /**
                 * @dev Revert with an error when attempting to fill an order that has been
                 *      cancelled.
                 *
                 * @param orderHash The hash of the cancelled order.
                 */
                error OrderIsCancelled(bytes32 orderHash);
                /**
                 * @dev Revert with an error when attempting to fill a basic order that has
                 *      been partially filled.
                 *
                 * @param orderHash The hash of the partially used order.
                 */
                error OrderPartiallyFilled(bytes32 orderHash);
                /**
                 * @dev Revert with an error when attempting to cancel an order as a caller
                 *      other than the indicated offerer or zone or when attempting to
                 *      cancel a contract order.
                 */
                error CannotCancelOrder();
                /**
                 * @dev Revert with an error when supplying a fraction with a value of zero
                 *      for the numerator or denominator, or one where the numerator exceeds
                 *      the denominator.
                 */
                error BadFraction();
                /**
                 * @dev Revert with an error when a caller attempts to supply callvalue to a
                 *      non-payable basic order route or does not supply any callvalue to a
                 *      payable basic order route.
                 */
                error InvalidMsgValue(uint256 value);
                /**
                 * @dev Revert with an error when attempting to fill a basic order using
                 *      calldata not produced by default ABI encoding.
                 */
                error InvalidBasicOrderParameterEncoding();
                /**
                 * @dev Revert with an error when attempting to fulfill any number of
                 *      available orders when none are fulfillable.
                 */
                error NoSpecifiedOrdersAvailable();
                /**
                 * @dev Revert with an error when attempting to fulfill an order with an
                 *      offer for a native token outside of matching orders.
                 */
                error InvalidNativeOfferItem();
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.17;
            import { ReentrancyErrors } from "../interfaces/ReentrancyErrors.sol";
            import { LowLevelHelpers } from "./LowLevelHelpers.sol";
            import {
                _revertInvalidMsgValue,
                _revertNoReentrantCalls
            } from "./ConsiderationErrors.sol";
            import {
                _ENTERED_AND_ACCEPTING_NATIVE_TOKENS,
                _ENTERED,
                _NOT_ENTERED
            } from "./ConsiderationConstants.sol";
            /**
             * @title ReentrancyGuard
             * @author 0age
             * @notice ReentrancyGuard contains a storage variable and related functionality
             *         for protecting against reentrancy.
             */
            contract ReentrancyGuard is ReentrancyErrors, LowLevelHelpers {
                // Prevent reentrant calls on protected functions.
                uint256 private _reentrancyGuard;
                /**
                 * @dev Initialize the reentrancy guard during deployment.
                 */
                constructor() {
                    // Initialize the reentrancy guard in a cleared state.
                    _reentrancyGuard = _NOT_ENTERED;
                }
                /**
                 * @dev Internal function to ensure that a sentinel value for the reentrancy
                 *      guard is not currently set and, if not, to set a sentinel value for
                 *      the reentrancy guard based on whether or not native tokens may be
                 *      received during execution or not.
                 *
                 * @param acceptNativeTokens A boolean indicating whether native tokens may
                 *                           be received during execution or not.
                 */
                function _setReentrancyGuard(bool acceptNativeTokens) internal {
                    // Ensure that the reentrancy guard is not already set.
                    _assertNonReentrant();
                    // Set the reentrancy guard. A value of 2 indicates that native tokens
                    // may not be accepted during execution, whereas a value of 3 indicates
                    // that they will be accepted (with any remaining native tokens returned
                    // to the caller).
                    unchecked {
                        _reentrancyGuard = _ENTERED + _cast(acceptNativeTokens);
                    }
                }
                /**
                 * @dev Internal function to unset the reentrancy guard sentinel value.
                 */
                function _clearReentrancyGuard() internal {
                    // Clear the reentrancy guard.
                    _reentrancyGuard = _NOT_ENTERED;
                }
                /**
                 * @dev Internal view function to ensure that a sentinel value for the
                        reentrancy guard is not currently set.
                 */
                function _assertNonReentrant() internal view {
                    // Ensure that the reentrancy guard is not currently set.
                    if (_reentrancyGuard != _NOT_ENTERED) {
                        _revertNoReentrantCalls();
                    }
                }
                /**
                 * @dev Internal view function to ensure that the sentinel value indicating
                 *      native tokens may be received during execution is currently set.
                 */
                function _assertAcceptingNativeTokens() internal view {
                    // Ensure that the reentrancy guard is not currently set.
                    if (_reentrancyGuard != _ENTERED_AND_ACCEPTING_NATIVE_TOKENS) {
                        _revertInvalidMsgValue(msg.value);
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.17;
            import {
                CostPerWord,
                ExtraGasBuffer,
                FreeMemoryPointerSlot,
                MemoryExpansionCoefficientShift,
                OneWord,
                OneWordShift,
                ThirtyOneBytes
            } from "./ConsiderationConstants.sol";
            /**
             * @title LowLevelHelpers
             * @author 0age
             * @notice LowLevelHelpers contains logic for performing various low-level
             *         operations.
             */
            contract LowLevelHelpers {
                /**
                 * @dev Internal view function to revert and pass along the revert reason if
                 *      data was returned by the last call and that the size of that data
                 *      does not exceed the currently allocated memory size.
                 */
                function _revertWithReasonIfOneIsReturned() internal view {
                    assembly {
                        // If it returned a message, bubble it up as long as sufficient gas
                        // remains to do so:
                        if returndatasize() {
                            // Ensure that sufficient gas is available to copy returndata
                            // while expanding memory where necessary. Start by computing
                            // the word size of returndata and allocated memory.
                            let returnDataWords := shr(
                                OneWordShift,
                                add(returndatasize(), ThirtyOneBytes)
                            )
                            // Note: use the free memory pointer in place of msize() to work
                            // around a Yul warning that prevents accessing msize directly
                            // when the IR pipeline is activated.
                            let msizeWords := shr(
                                OneWordShift,
                                mload(FreeMemoryPointerSlot)
                            )
                            // Next, compute the cost of the returndatacopy.
                            let cost := mul(CostPerWord, returnDataWords)
                            // Then, compute cost of new memory allocation.
                            if gt(returnDataWords, msizeWords) {
                                cost := add(
                                    cost,
                                    add(
                                        mul(sub(returnDataWords, msizeWords), CostPerWord),
                                        shr(
                                            MemoryExpansionCoefficientShift,
                                            sub(
                                                mul(returnDataWords, returnDataWords),
                                                mul(msizeWords, msizeWords)
                                            )
                                        )
                                    )
                                )
                            }
                            // Finally, add a small constant and compare to gas remaining;
                            // bubble up the revert data if enough gas is still available.
                            if lt(add(cost, ExtraGasBuffer), gas()) {
                                // Copy returndata to memory; overwrite existing memory.
                                returndatacopy(0, 0, returndatasize())
                                // Revert, specifying memory region with copied returndata.
                                revert(0, returndatasize())
                            }
                        }
                    }
                }
                /**
                 * @dev Internal view function to branchlessly select either the caller (if
                 *      a supplied recipient is equal to zero) or the supplied recipient (if
                 *      that recipient is a nonzero value).
                 *
                 * @param recipient The supplied recipient.
                 *
                 * @return updatedRecipient The updated recipient.
                 */
                function _substituteCallerForEmptyRecipient(
                    address recipient
                ) internal view returns (address updatedRecipient) {
                    // Utilize assembly to perform a branchless operation on the recipient.
                    assembly {
                        // Add caller to recipient if recipient equals 0; otherwise add 0.
                        updatedRecipient := add(recipient, mul(iszero(recipient), caller()))
                    }
                }
                /**
                 * @dev Internal pure function to cast a `bool` value to a `uint256` value.
                 *
                 * @param b The `bool` value to cast.
                 *
                 * @return u The `uint256` value.
                 */
                function _cast(bool b) internal pure returns (uint256 u) {
                    assembly {
                        u := b
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.13;
            /**
             * @title ReentrancyErrors
             * @author 0age
             * @notice ReentrancyErrors contains errors related to reentrancy.
             */
            interface ReentrancyErrors {
                /**
                 * @dev Revert with an error when a caller attempts to reenter a protected
                 *      function.
                 */
                error NoReentrantCalls();
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.17;
            import {
                ConduitControllerInterface
            } from "../interfaces/ConduitControllerInterface.sol";
            import {
                ConsiderationEventsAndErrors
            } from "../interfaces/ConsiderationEventsAndErrors.sol";
            import {
                BulkOrder_Typehash_Height_One,
                BulkOrder_Typehash_Height_Two,
                BulkOrder_Typehash_Height_Three,
                BulkOrder_Typehash_Height_Four,
                BulkOrder_Typehash_Height_Five,
                BulkOrder_Typehash_Height_Six,
                BulkOrder_Typehash_Height_Seven,
                BulkOrder_Typehash_Height_Eight,
                BulkOrder_Typehash_Height_Nine,
                BulkOrder_Typehash_Height_Ten,
                BulkOrder_Typehash_Height_Eleven,
                BulkOrder_Typehash_Height_Twelve,
                BulkOrder_Typehash_Height_Thirteen,
                BulkOrder_Typehash_Height_Fourteen,
                BulkOrder_Typehash_Height_Fifteen,
                BulkOrder_Typehash_Height_Sixteen,
                BulkOrder_Typehash_Height_Seventeen,
                BulkOrder_Typehash_Height_Eighteen,
                BulkOrder_Typehash_Height_Nineteen,
                BulkOrder_Typehash_Height_Twenty,
                BulkOrder_Typehash_Height_TwentyOne,
                BulkOrder_Typehash_Height_TwentyTwo,
                BulkOrder_Typehash_Height_TwentyThree,
                BulkOrder_Typehash_Height_TwentyFour,
                EIP712_domainData_chainId_offset,
                EIP712_domainData_nameHash_offset,
                EIP712_domainData_size,
                EIP712_domainData_verifyingContract_offset,
                EIP712_domainData_versionHash_offset,
                FreeMemoryPointerSlot,
                NameLengthPtr,
                NameWithLength,
                OneWord,
                Slot0x80,
                ThreeWords,
                ZeroSlot
            } from "./ConsiderationConstants.sol";
            import { ConsiderationDecoder } from "./ConsiderationDecoder.sol";
            import { ConsiderationEncoder } from "./ConsiderationEncoder.sol";
            /**
             * @title ConsiderationBase
             * @author 0age
             * @notice ConsiderationBase contains immutable constants and constructor logic.
             */
            contract ConsiderationBase is
                ConsiderationDecoder,
                ConsiderationEncoder,
                ConsiderationEventsAndErrors
            {
                // Precompute hashes, original chainId, and domain separator on deployment.
                bytes32 internal immutable _NAME_HASH;
                bytes32 internal immutable _VERSION_HASH;
                bytes32 internal immutable _EIP_712_DOMAIN_TYPEHASH;
                bytes32 internal immutable _OFFER_ITEM_TYPEHASH;
                bytes32 internal immutable _CONSIDERATION_ITEM_TYPEHASH;
                bytes32 internal immutable _ORDER_TYPEHASH;
                uint256 internal immutable _CHAIN_ID;
                bytes32 internal immutable _DOMAIN_SEPARATOR;
                // Allow for interaction with the conduit controller.
                ConduitControllerInterface internal immutable _CONDUIT_CONTROLLER;
                // Cache the conduit creation code hash used by the conduit controller.
                bytes32 internal immutable _CONDUIT_CREATION_CODE_HASH;
                /**
                 * @dev Derive and set hashes, reference chainId, and associated domain
                 *      separator during deployment.
                 *
                 * @param conduitController A contract that deploys conduits, or proxies
                 *                          that may optionally be used to transfer approved
                 *                          ERC20/721/1155 tokens.
                 */
                constructor(address conduitController) {
                    // Derive name and version hashes alongside required EIP-712 typehashes.
                    (
                        _NAME_HASH,
                        _VERSION_HASH,
                        _EIP_712_DOMAIN_TYPEHASH,
                        _OFFER_ITEM_TYPEHASH,
                        _CONSIDERATION_ITEM_TYPEHASH,
                        _ORDER_TYPEHASH
                    ) = _deriveTypehashes();
                    // Store the current chainId and derive the current domain separator.
                    _CHAIN_ID = block.chainid;
                    _DOMAIN_SEPARATOR = _deriveDomainSeparator();
                    // Set the supplied conduit controller.
                    _CONDUIT_CONTROLLER = ConduitControllerInterface(conduitController);
                    // Retrieve the conduit creation code hash from the supplied controller.
                    (_CONDUIT_CREATION_CODE_HASH, ) = (
                        _CONDUIT_CONTROLLER.getConduitCodeHashes()
                    );
                }
                /**
                 * @dev Internal view function to derive the EIP-712 domain separator.
                 *
                 * @return domainSeparator The derived domain separator.
                 */
                function _deriveDomainSeparator()
                    internal
                    view
                    returns (bytes32 domainSeparator)
                {
                    bytes32 typehash = _EIP_712_DOMAIN_TYPEHASH;
                    bytes32 nameHash = _NAME_HASH;
                    bytes32 versionHash = _VERSION_HASH;
                    // Leverage scratch space and other memory to perform an efficient hash.
                    assembly {
                        // Retrieve the free memory pointer; it will be replaced afterwards.
                        let freeMemoryPointer := mload(FreeMemoryPointerSlot)
                        // Retrieve value at 0x80; it will also be replaced afterwards.
                        let slot0x80 := mload(Slot0x80)
                        // Place typehash, name hash, and version hash at start of memory.
                        mstore(0, typehash)
                        mstore(EIP712_domainData_nameHash_offset, nameHash)
                        mstore(EIP712_domainData_versionHash_offset, versionHash)
                        // Place chainId in the next memory location.
                        mstore(EIP712_domainData_chainId_offset, chainid())
                        // Place the address of this contract in the next memory location.
                        mstore(EIP712_domainData_verifyingContract_offset, address())
                        // Hash relevant region of memory to derive the domain separator.
                        domainSeparator := keccak256(0, EIP712_domainData_size)
                        // Restore the free memory pointer.
                        mstore(FreeMemoryPointerSlot, freeMemoryPointer)
                        // Restore the zero slot to zero.
                        mstore(ZeroSlot, 0)
                        // Restore the value at 0x80.
                        mstore(Slot0x80, slot0x80)
                    }
                }
                /**
                 * @dev Internal pure function to retrieve the default name of this
                 *      contract and return.
                 *
                 * @return The name of this contract.
                 */
                function _name() internal pure virtual returns (string memory) {
                    // Return the name of the contract.
                    assembly {
                        // First element is the offset for the returned string. Offset the
                        // value in memory by one word so that the free memory pointer will
                        // be overwritten by the next write.
                        mstore(OneWord, OneWord)
                        // Name is right padded, so it touches the length which is left
                        // padded. This enables writing both values at once. The free memory
                        // pointer will be overwritten in the process.
                        mstore(NameLengthPtr, NameWithLength)
                        // Standard ABI encoding pads returned data to the nearest word. Use
                        // the already empty zero slot memory region for this purpose and
                        // return the final name string, offset by the original single word.
                        return(OneWord, ThreeWords)
                    }
                }
                /**
                 * @dev Internal pure function to retrieve the default name of this contract
                 *      as a string that can be used internally.
                 *
                 * @return The name of this contract.
                 */
                function _nameString() internal pure virtual returns (string memory) {
                    // Return the name of the contract.
                    return "Consideration";
                }
                /**
                 * @dev Internal pure function to derive required EIP-712 typehashes and
                 *      other hashes during contract creation.
                 *
                 * @return nameHash                  The hash of the name of the contract.
                 * @return versionHash               The hash of the version string of the
                 *                                   contract.
                 * @return eip712DomainTypehash      The primary EIP-712 domain typehash.
                 * @return offerItemTypehash         The EIP-712 typehash for OfferItem
                 *                                   types.
                 * @return considerationItemTypehash The EIP-712 typehash for
                 *                                   ConsiderationItem types.
                 * @return orderTypehash             The EIP-712 typehash for Order types.
                 */
                function _deriveTypehashes()
                    internal
                    pure
                    returns (
                        bytes32 nameHash,
                        bytes32 versionHash,
                        bytes32 eip712DomainTypehash,
                        bytes32 offerItemTypehash,
                        bytes32 considerationItemTypehash,
                        bytes32 orderTypehash
                    )
                {
                    // Derive hash of the name of the contract.
                    nameHash = keccak256(bytes(_nameString()));
                    // Derive hash of the version string of the contract.
                    versionHash = keccak256(bytes("1.5"));
                    // Construct the OfferItem type string.
                    bytes memory offerItemTypeString = bytes(
                        "OfferItem("
                        "uint8 itemType,"
                        "address token,"
                        "uint256 identifierOrCriteria,"
                        "uint256 startAmount,"
                        "uint256 endAmount"
                        ")"
                    );
                    // Construct the ConsiderationItem type string.
                    bytes memory considerationItemTypeString = bytes(
                        "ConsiderationItem("
                        "uint8 itemType,"
                        "address token,"
                        "uint256 identifierOrCriteria,"
                        "uint256 startAmount,"
                        "uint256 endAmount,"
                        "address recipient"
                        ")"
                    );
                    // Construct the OrderComponents type string, not including the above.
                    bytes memory orderComponentsPartialTypeString = bytes(
                        "OrderComponents("
                        "address offerer,"
                        "address zone,"
                        "OfferItem[] offer,"
                        "ConsiderationItem[] consideration,"
                        "uint8 orderType,"
                        "uint256 startTime,"
                        "uint256 endTime,"
                        "bytes32 zoneHash,"
                        "uint256 salt,"
                        "bytes32 conduitKey,"
                        "uint256 counter"
                        ")"
                    );
                    // Construct the primary EIP-712 domain type string.
                    eip712DomainTypehash = keccak256(
                        bytes(
                            "EIP712Domain("
                            "string name,"
                            "string version,"
                            "uint256 chainId,"
                            "address verifyingContract"
                            ")"
                        )
                    );
                    // Derive the OfferItem type hash using the corresponding type string.
                    offerItemTypehash = keccak256(offerItemTypeString);
                    // Derive ConsiderationItem type hash using corresponding type string.
                    considerationItemTypehash = keccak256(considerationItemTypeString);
                    bytes memory orderTypeString = bytes.concat(
                        orderComponentsPartialTypeString,
                        considerationItemTypeString,
                        offerItemTypeString
                    );
                    // Derive OrderItem type hash via combination of relevant type strings.
                    orderTypehash = keccak256(orderTypeString);
                }
                /**
                 * @dev Internal pure function to look up one of twenty-four potential bulk
                 *      order typehash constants based on the height of the bulk order tree.
                 *      Note that values between one and twenty-four are supported, which is
                 *      enforced by _isValidBulkOrderSize.
                 *
                 * @param _treeHeight The height of the bulk order tree. The value must be
                 *                    between one and twenty-four.
                 *
                 * @return _typeHash The EIP-712 typehash for the bulk order type with the
                 *                   given height.
                 */
                function _lookupBulkOrderTypehash(
                    uint256 _treeHeight
                ) internal pure returns (bytes32 _typeHash) {
                    // Utilize assembly to efficiently retrieve correct bulk order typehash.
                    assembly {
                        // Use a Yul function to enable use of the `leave` keyword
                        // to stop searching once the appropriate type hash is found.
                        function lookupTypeHash(treeHeight) -> typeHash {
                            // Handle tree heights one through eight.
                            if lt(treeHeight, 9) {
                                // Handle tree heights one through four.
                                if lt(treeHeight, 5) {
                                    // Handle tree heights one and two.
                                    if lt(treeHeight, 3) {
                                        // Utilize branchless logic to determine typehash.
                                        typeHash := ternary(
                                            eq(treeHeight, 1),
                                            BulkOrder_Typehash_Height_One,
                                            BulkOrder_Typehash_Height_Two
                                        )
                                        // Exit the function once typehash has been located.
                                        leave
                                    }
                                    // Handle height three and four via branchless logic.
                                    typeHash := ternary(
                                        eq(treeHeight, 3),
                                        BulkOrder_Typehash_Height_Three,
                                        BulkOrder_Typehash_Height_Four
                                    )
                                    // Exit the function once typehash has been located.
                                    leave
                                }
                                // Handle tree height five and six.
                                if lt(treeHeight, 7) {
                                    // Utilize branchless logic to determine typehash.
                                    typeHash := ternary(
                                        eq(treeHeight, 5),
                                        BulkOrder_Typehash_Height_Five,
                                        BulkOrder_Typehash_Height_Six
                                    )
                                    // Exit the function once typehash has been located.
                                    leave
                                }
                                // Handle height seven and eight via branchless logic.
                                typeHash := ternary(
                                    eq(treeHeight, 7),
                                    BulkOrder_Typehash_Height_Seven,
                                    BulkOrder_Typehash_Height_Eight
                                )
                                // Exit the function once typehash has been located.
                                leave
                            }
                            // Handle tree height nine through sixteen.
                            if lt(treeHeight, 17) {
                                // Handle tree height nine through twelve.
                                if lt(treeHeight, 13) {
                                    // Handle tree height nine and ten.
                                    if lt(treeHeight, 11) {
                                        // Utilize branchless logic to determine typehash.
                                        typeHash := ternary(
                                            eq(treeHeight, 9),
                                            BulkOrder_Typehash_Height_Nine,
                                            BulkOrder_Typehash_Height_Ten
                                        )
                                        // Exit the function once typehash has been located.
                                        leave
                                    }
                                    // Handle height eleven and twelve via branchless logic.
                                    typeHash := ternary(
                                        eq(treeHeight, 11),
                                        BulkOrder_Typehash_Height_Eleven,
                                        BulkOrder_Typehash_Height_Twelve
                                    )
                                    // Exit the function once typehash has been located.
                                    leave
                                }
                                // Handle tree height thirteen and fourteen.
                                if lt(treeHeight, 15) {
                                    // Utilize branchless logic to determine typehash.
                                    typeHash := ternary(
                                        eq(treeHeight, 13),
                                        BulkOrder_Typehash_Height_Thirteen,
                                        BulkOrder_Typehash_Height_Fourteen
                                    )
                                    // Exit the function once typehash has been located.
                                    leave
                                }
                                // Handle height fifteen and sixteen via branchless logic.
                                typeHash := ternary(
                                    eq(treeHeight, 15),
                                    BulkOrder_Typehash_Height_Fifteen,
                                    BulkOrder_Typehash_Height_Sixteen
                                )
                                // Exit the function once typehash has been located.
                                leave
                            }
                            // Handle tree height seventeen through twenty.
                            if lt(treeHeight, 21) {
                                // Handle tree height seventeen and eighteen.
                                if lt(treeHeight, 19) {
                                    // Utilize branchless logic to determine typehash.
                                    typeHash := ternary(
                                        eq(treeHeight, 17),
                                        BulkOrder_Typehash_Height_Seventeen,
                                        BulkOrder_Typehash_Height_Eighteen
                                    )
                                    // Exit the function once typehash has been located.
                                    leave
                                }
                                // Handle height nineteen and twenty via branchless logic.
                                typeHash := ternary(
                                    eq(treeHeight, 19),
                                    BulkOrder_Typehash_Height_Nineteen,
                                    BulkOrder_Typehash_Height_Twenty
                                )
                                // Exit the function once typehash has been located.
                                leave
                            }
                            // Handle tree height twenty-one and twenty-two.
                            if lt(treeHeight, 23) {
                                // Utilize branchless logic to determine typehash.
                                typeHash := ternary(
                                    eq(treeHeight, 21),
                                    BulkOrder_Typehash_Height_TwentyOne,
                                    BulkOrder_Typehash_Height_TwentyTwo
                                )
                                // Exit the function once typehash has been located.
                                leave
                            }
                            // Handle height twenty-three & twenty-four w/ branchless logic.
                            typeHash := ternary(
                                eq(treeHeight, 23),
                                BulkOrder_Typehash_Height_TwentyThree,
                                BulkOrder_Typehash_Height_TwentyFour
                            )
                            // Exit the function once typehash has been located.
                            leave
                        }
                        // Implement ternary conditional using branchless logic.
                        function ternary(cond, ifTrue, ifFalse) -> c {
                            c := xor(ifFalse, mul(cond, xor(ifFalse, ifTrue)))
                        }
                        // Look up the typehash using the supplied tree height.
                        _typeHash := lookupTypeHash(_treeHeight)
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.17;
            import {
                BasicOrder_additionalRecipients_length_cdPtr,
                BasicOrder_common_params_size,
                BasicOrder_startTime_cdPtr,
                BasicOrder_startTimeThroughZoneHash_size,
                Common_amount_offset,
                Common_identifier_offset,
                Common_token_offset,
                generateOrder_base_tail_offset,
                generateOrder_context_head_offset,
                generateOrder_head_offset,
                generateOrder_maximumSpent_head_offset,
                generateOrder_minimumReceived_head_offset,
                generateOrder_selector_offset,
                generateOrder_selector,
                OneWord,
                OneWordShift,
                OnlyFullWordMask,
                OrderFulfilled_baseDataSize,
                OrderFulfilled_offer_length_baseOffset,
                OrderParameters_consideration_head_offset,
                OrderParameters_endTime_offset,
                OrderParameters_offer_head_offset,
                OrderParameters_startTime_offset,
                OrderParameters_zoneHash_offset,
                ratifyOrder_base_tail_offset,
                ratifyOrder_consideration_head_offset,
                ratifyOrder_context_head_offset,
                ratifyOrder_contractNonce_offset,
                ratifyOrder_head_offset,
                ratifyOrder_orderHashes_head_offset,
                ratifyOrder_selector_offset,
                ratifyOrder_selector,
                ReceivedItem_size,
                Selector_length,
                SixtyThreeBytes,
                SpentItem_size_shift,
                SpentItem_size,
                validateOrder_head_offset,
                validateOrder_selector_offset,
                validateOrder_selector,
                validateOrder_zoneParameters_offset,
                ZoneParameters_base_tail_offset,
                ZoneParameters_basicOrderFixedElements_length,
                ZoneParameters_consideration_head_offset,
                ZoneParameters_endTime_offset,
                ZoneParameters_extraData_head_offset,
                ZoneParameters_fulfiller_offset,
                ZoneParameters_offer_head_offset,
                ZoneParameters_offerer_offset,
                ZoneParameters_orderHashes_head_offset,
                ZoneParameters_selectorAndPointer_length,
                ZoneParameters_startTime_offset,
                ZoneParameters_zoneHash_offset
            } from "./ConsiderationConstants.sol";
            import {
                BasicOrderParameters,
                OrderParameters
            } from "./ConsiderationStructs.sol";
            import {
                CalldataPointer,
                getFreeMemoryPointer,
                MemoryPointer
            } from "../helpers/PointerLibraries.sol";
            contract ConsiderationEncoder {
                /**
                 * @dev Takes a bytes array and casts it to a memory pointer.
                 *
                 * @param obj A bytes array in memory.
                 *
                 * @return ptr A memory pointer to the start of the bytes array in memory.
                 */
                function toMemoryPointer(
                    bytes memory obj
                ) internal pure returns (MemoryPointer ptr) {
                    assembly {
                        ptr := obj
                    }
                }
                /**
                 * @dev Takes an array of bytes32 types and casts it to a memory pointer.
                 *
                 * @param obj An array of bytes32 types in memory.
                 *
                 * @return ptr A memory pointer to the start of the array of bytes32 types
                 *             in memory.
                 */
                function toMemoryPointer(
                    bytes32[] memory obj
                ) internal pure returns (MemoryPointer ptr) {
                    assembly {
                        ptr := obj
                    }
                }
                /**
                 * @dev Takes a bytes array in memory and copies it to a new location in
                 *      memory.
                 *
                 * @param src A memory pointer referencing the bytes array to be copied (and
                 *            pointing to the length of the bytes array).
                 * @param src A memory pointer referencing the location in memory to copy
                 *            the bytes array to (and pointing to the length of the copied
                 *            bytes array).
                 *
                 * @return size The size of the bytes array.
                 */
                function _encodeBytes(
                    MemoryPointer src,
                    MemoryPointer dst
                ) internal view returns (uint256 size) {
                    unchecked {
                        // Mask the length of the bytes array to protect against overflow
                        // and round up to the nearest word.
                        // Note: `size` also includes the 1 word that stores the length.
                        size = (src.readUint256() + SixtyThreeBytes) & OnlyFullWordMask;
                        // Copy the bytes array to the new memory location.
                        src.copy(dst, size);
                    }
                }
                /**
                 * @dev Takes an OrderParameters struct and a context bytes array in memory
                 *      and encodes it as `generateOrder` calldata.
                 *
                 * @param orderParameters The OrderParameters struct used to construct the
                 *                        encoded `generateOrder` calldata.
                 * @param context         The context bytes array used to construct the
                 *                        encoded `generateOrder` calldata.
                 *
                 * @return dst  A memory pointer referencing the encoded `generateOrder`
                 *              calldata.
                 * @return size The size of the bytes array.
                 */
                function _encodeGenerateOrder(
                    OrderParameters memory orderParameters,
                    bytes memory context
                ) internal view returns (MemoryPointer dst, uint256 size) {
                    // Get the memory pointer for the OrderParameters struct.
                    MemoryPointer src = orderParameters.toMemoryPointer();
                    // Get free memory pointer to write calldata to.
                    dst = getFreeMemoryPointer();
                    // Write generateOrder selector and get pointer to start of calldata.
                    dst.write(generateOrder_selector);
                    dst = dst.offset(generateOrder_selector_offset);
                    // Get pointer to the beginning of the encoded data.
                    MemoryPointer dstHead = dst.offset(generateOrder_head_offset);
                    // Write `fulfiller` to calldata.
                    dstHead.write(msg.sender);
                    // Initialize tail offset, used to populate the minimumReceived array.
                    uint256 tailOffset = generateOrder_base_tail_offset;
                    // Write offset to minimumReceived.
                    dstHead.offset(generateOrder_minimumReceived_head_offset).write(
                        tailOffset
                    );
                    // Get memory pointer to `orderParameters.offer.length`.
                    MemoryPointer srcOfferPointer = src
                        .offset(OrderParameters_offer_head_offset)
                        .readMemoryPointer();
                    // Encode the offer array as a `SpentItem[]`.
                    uint256 minimumReceivedSize = _encodeSpentItems(
                        srcOfferPointer,
                        dstHead.offset(tailOffset)
                    );
                    unchecked {
                        // Increment tail offset, now used to populate maximumSpent array.
                        tailOffset += minimumReceivedSize;
                    }
                    // Write offset to maximumSpent.
                    dstHead.offset(generateOrder_maximumSpent_head_offset).write(
                        tailOffset
                    );
                    // Get memory pointer to `orderParameters.consideration.length`.
                    MemoryPointer srcConsiderationPointer = src
                        .offset(OrderParameters_consideration_head_offset)
                        .readMemoryPointer();
                    // Encode the consideration array as a `SpentItem[]`.
                    uint256 maximumSpentSize = _encodeSpentItems(
                        srcConsiderationPointer,
                        dstHead.offset(tailOffset)
                    );
                    unchecked {
                        // Increment tail offset, now used to populate context array.
                        tailOffset += maximumSpentSize;
                    }
                    // Write offset to context.
                    dstHead.offset(generateOrder_context_head_offset).write(tailOffset);
                    // Get memory pointer to context.
                    MemoryPointer srcContext = toMemoryPointer(context);
                    // Encode context as a bytes array.
                    uint256 contextSize = _encodeBytes(
                        srcContext,
                        dstHead.offset(tailOffset)
                    );
                    unchecked {
                        // Increment the tail offset, now used to determine final size.
                        tailOffset += contextSize;
                        // Derive the final size by including the selector.
                        size = Selector_length + tailOffset;
                    }
                }
                /**
                 * @dev Takes an order hash (e.g. offerer shifted 96 bits to the left XOR'd
                 *      with the contract nonce in the case of contract orders), an
                 *      OrderParameters struct, context bytes array, and an array of order
                 *      hashes for each order included as part of the current fulfillment
                 *      and encodes it as `ratifyOrder` calldata.
                 *
                 * @param orderHash       The order hash (e.g. shl(0x60, offerer) ^ nonce).
                 * @param orderParameters The OrderParameters struct used to construct the
                 *                        encoded `ratifyOrder` calldata.
                 * @param context         The context bytes array used to construct the
                 *                        encoded `ratifyOrder` calldata.
                 * @param orderHashes     An array of bytes32 values representing the order
                 *                        hashes of all orders included as part of the
                 *                        current fulfillment.
                 * @param shiftedOfferer  The offerer for the order, shifted 96 bits to the
                 *                        left.
                 *
                 * @return dst  A memory pointer referencing the encoded `ratifyOrder`
                 *              calldata.
                 * @return size The size of the bytes array.
                 */
                function _encodeRatifyOrder(
                    bytes32 orderHash, // e.g. shl(0x60, offerer) ^ contract nonce
                    OrderParameters memory orderParameters,
                    bytes memory context, // encoded based on the schemaID
                    bytes32[] memory orderHashes,
                    uint256 shiftedOfferer
                ) internal view returns (MemoryPointer dst, uint256 size) {
                    // Get free memory pointer to write calldata to. This isn't allocated as
                    // it is only used for a single function call.
                    dst = getFreeMemoryPointer();
                    // Write ratifyOrder selector and get pointer to start of calldata.
                    dst.write(ratifyOrder_selector);
                    dst = dst.offset(ratifyOrder_selector_offset);
                    // Get pointer to the beginning of the encoded data.
                    MemoryPointer dstHead = dst.offset(ratifyOrder_head_offset);
                    // Write contractNonce to calldata via xor(orderHash, shiftedOfferer).
                    dstHead.offset(ratifyOrder_contractNonce_offset).write(
                        uint256(orderHash) ^ shiftedOfferer
                    );
                    // Initialize tail offset, used to populate the offer array.
                    uint256 tailOffset = ratifyOrder_base_tail_offset;
                    MemoryPointer src = orderParameters.toMemoryPointer();
                    // Write offset to `offer`.
                    dstHead.write(tailOffset);
                    // Get memory pointer to `orderParameters.offer.length`.
                    MemoryPointer srcOfferPointer = src
                        .offset(OrderParameters_offer_head_offset)
                        .readMemoryPointer();
                    // Encode the offer array as a `SpentItem[]`.
                    uint256 offerSize = _encodeSpentItems(
                        srcOfferPointer,
                        dstHead.offset(tailOffset)
                    );
                    unchecked {
                        // Increment tail offset, now used to populate consideration array.
                        tailOffset += offerSize;
                    }
                    // Write offset to consideration.
                    dstHead.offset(ratifyOrder_consideration_head_offset).write(tailOffset);
                    // Get pointer to `orderParameters.consideration.length`.
                    MemoryPointer srcConsiderationPointer = src
                        .offset(OrderParameters_consideration_head_offset)
                        .readMemoryPointer();
                    // Encode the consideration array as a `ReceivedItem[]`.
                    uint256 considerationSize = _encodeConsiderationAsReceivedItems(
                        srcConsiderationPointer,
                        dstHead.offset(tailOffset)
                    );
                    unchecked {
                        // Increment tail offset, now used to populate context array.
                        tailOffset += considerationSize;
                    }
                    // Write offset to context.
                    dstHead.offset(ratifyOrder_context_head_offset).write(tailOffset);
                    // Encode context.
                    uint256 contextSize = _encodeBytes(
                        toMemoryPointer(context),
                        dstHead.offset(tailOffset)
                    );
                    unchecked {
                        // Increment tail offset, now used to populate orderHashes array.
                        tailOffset += contextSize;
                    }
                    // Write offset to orderHashes.
                    dstHead.offset(ratifyOrder_orderHashes_head_offset).write(tailOffset);
                    // Encode orderHashes.
                    uint256 orderHashesSize = _encodeOrderHashes(
                        toMemoryPointer(orderHashes),
                        dstHead.offset(tailOffset)
                    );
                    unchecked {
                        // Increment the tail offset, now used to determine final size.
                        tailOffset += orderHashesSize;
                        // Derive the final size by including the selector.
                        size = Selector_length + tailOffset;
                    }
                }
                /**
                 * @dev Takes an order hash, OrderParameters struct, extraData bytes array,
                 *      and array of order hashes for each order included as part of the
                 *      current fulfillment and encodes it as `validateOrder` calldata.
                 *      Note that future, new versions of this contract may end up writing
                 *      to a memory region that might have been potentially dirtied by the
                 *      accumulator. Since the book-keeping for the accumulator does not
                 *      update the free memory pointer, it will be necessary to ensure that
                 *      all bytes in the memory in the range [dst, dst+size) are fully
                 *      updated/written to in this function.
                 *
                 * @param orderHash       The order hash.
                 * @param orderParameters The OrderParameters struct used to construct the
                 *                        encoded `validateOrder` calldata.
                 * @param extraData       The extraData bytes array used to construct the
                 *                        encoded `validateOrder` calldata.
                 * @param orderHashes     An array of bytes32 values representing the order
                 *                        hashes of all orders included as part of the
                 *                        current fulfillment.
                 *
                 * @return dst  A memory pointer referencing the encoded `validateOrder`
                 *              calldata.
                 * @return size The size of the bytes array.
                 */
                function _encodeValidateOrder(
                    bytes32 orderHash,
                    OrderParameters memory orderParameters,
                    bytes memory extraData,
                    bytes32[] memory orderHashes
                ) internal view returns (MemoryPointer dst, uint256 size) {
                    // Get free memory pointer to write calldata to. This isn't allocated as
                    // it is only used for a single function call.
                    dst = getFreeMemoryPointer();
                    // Write validateOrder selector and get pointer to start of calldata.
                    dst.write(validateOrder_selector);
                    dst = dst.offset(validateOrder_selector_offset);
                    // Get pointer to the beginning of the encoded data.
                    MemoryPointer dstHead = dst.offset(validateOrder_head_offset);
                    // Write offset to zoneParameters to start of calldata.
                    dstHead.write(validateOrder_zoneParameters_offset);
                    // Reuse `dstHead` as pointer to zoneParameters.
                    dstHead = dstHead.offset(validateOrder_zoneParameters_offset);
                    // Write orderHash and fulfiller to zoneParameters.
                    dstHead.writeBytes32(orderHash);
                    dstHead.offset(ZoneParameters_fulfiller_offset).write(msg.sender);
                    // Get the memory pointer to the order parameters struct.
                    MemoryPointer src = orderParameters.toMemoryPointer();
                    // Copy offerer, startTime, endTime and zoneHash to zoneParameters.
                    dstHead.offset(ZoneParameters_offerer_offset).write(src.readUint256());
                    dstHead.offset(ZoneParameters_startTime_offset).write(
                        src.offset(OrderParameters_startTime_offset).readUint256()
                    );
                    dstHead.offset(ZoneParameters_endTime_offset).write(
                        src.offset(OrderParameters_endTime_offset).readUint256()
                    );
                    dstHead.offset(ZoneParameters_zoneHash_offset).write(
                        src.offset(OrderParameters_zoneHash_offset).readUint256()
                    );
                    // Initialize tail offset, used to populate the offer array.
                    uint256 tailOffset = ZoneParameters_base_tail_offset;
                    // Write offset to `offer`.
                    dstHead.offset(ZoneParameters_offer_head_offset).write(tailOffset);
                    // Get pointer to `orderParameters.offer.length`.
                    MemoryPointer srcOfferPointer = src
                        .offset(OrderParameters_offer_head_offset)
                        .readMemoryPointer();
                    // Encode the offer array as a `SpentItem[]`.
                    uint256 offerSize = _encodeSpentItems(
                        srcOfferPointer,
                        dstHead.offset(tailOffset)
                    );
                    unchecked {
                        // Increment tail offset, now used to populate consideration array.
                        tailOffset += offerSize;
                    }
                    // Write offset to consideration.
                    dstHead.offset(ZoneParameters_consideration_head_offset).write(
                        tailOffset
                    );
                    // Get pointer to `orderParameters.consideration.length`.
                    MemoryPointer srcConsiderationPointer = src
                        .offset(OrderParameters_consideration_head_offset)
                        .readMemoryPointer();
                    // Encode the consideration array as a `ReceivedItem[]`.
                    uint256 considerationSize = _encodeConsiderationAsReceivedItems(
                        srcConsiderationPointer,
                        dstHead.offset(tailOffset)
                    );
                    unchecked {
                        // Increment tail offset, now used to populate extraData array.
                        tailOffset += considerationSize;
                    }
                    // Write offset to extraData.
                    dstHead.offset(ZoneParameters_extraData_head_offset).write(tailOffset);
                    // Copy extraData.
                    uint256 extraDataSize = _encodeBytes(
                        toMemoryPointer(extraData),
                        dstHead.offset(tailOffset)
                    );
                    unchecked {
                        // Increment tail offset, now used to populate orderHashes array.
                        tailOffset += extraDataSize;
                    }
                    // Write offset to orderHashes.
                    dstHead.offset(ZoneParameters_orderHashes_head_offset).write(
                        tailOffset
                    );
                    // Encode the order hashes array.
                    uint256 orderHashesSize = _encodeOrderHashes(
                        toMemoryPointer(orderHashes),
                        dstHead.offset(tailOffset)
                    );
                    unchecked {
                        // Increment the tail offset, now used to determine final size.
                        tailOffset += orderHashesSize;
                        // Derive final size including selector and ZoneParameters pointer.
                        size = ZoneParameters_selectorAndPointer_length + tailOffset;
                    }
                }
                /**
                 * @dev Takes an order hash and BasicOrderParameters struct (from calldata)
                 *      and encodes it as `validateOrder` calldata.
                 *
                 * @param orderHash  The order hash.
                 * @param parameters The BasicOrderParameters struct used to construct the
                 *                   encoded `validateOrder` calldata.
                 *
                 * @return dst  A memory pointer referencing the encoded `validateOrder`
                 *              calldata.
                 * @return size The size of the bytes array.
                 */
                function _encodeValidateBasicOrder(
                    bytes32 orderHash,
                    BasicOrderParameters calldata parameters
                ) internal view returns (MemoryPointer dst, uint256 size) {
                    // Get free memory pointer to write calldata to. This isn't allocated as
                    // it is only used for a single function call.
                    dst = getFreeMemoryPointer();
                    // Write validateOrder selector and get pointer to start of calldata.
                    dst.write(validateOrder_selector);
                    dst = dst.offset(validateOrder_selector_offset);
                    // Get pointer to the beginning of the encoded data.
                    MemoryPointer dstHead = dst.offset(validateOrder_head_offset);
                    // Write offset to zoneParameters to start of calldata.
                    dstHead.write(validateOrder_zoneParameters_offset);
                    // Reuse `dstHead` as pointer to zoneParameters.
                    dstHead = dstHead.offset(validateOrder_zoneParameters_offset);
                    // Write offerer, orderHash and fulfiller to zoneParameters.
                    dstHead.writeBytes32(orderHash);
                    dstHead.offset(ZoneParameters_fulfiller_offset).write(msg.sender);
                    dstHead.offset(ZoneParameters_offerer_offset).write(parameters.offerer);
                    // Copy startTime, endTime and zoneHash to zoneParameters.
                    CalldataPointer.wrap(BasicOrder_startTime_cdPtr).copy(
                        dstHead.offset(ZoneParameters_startTime_offset),
                        BasicOrder_startTimeThroughZoneHash_size
                    );
                    // Initialize tail offset, used for the offer + consideration arrays.
                    uint256 tailOffset = ZoneParameters_base_tail_offset;
                    // Write offset to offer from event data into target calldata.
                    dstHead.offset(ZoneParameters_offer_head_offset).write(tailOffset);
                    unchecked {
                        // Write consideration offset next (located 5 words after offer).
                        dstHead.offset(ZoneParameters_consideration_head_offset).write(
                            tailOffset + BasicOrder_common_params_size
                        );
                        // Retrieve the offset to the length of additional recipients.
                        uint256 additionalRecipientsLength = CalldataPointer
                            .wrap(BasicOrder_additionalRecipients_length_cdPtr)
                            .readUint256();
                        // Derive offset to event data using base offset & total recipients.
                        uint256 offerDataOffset = OrderFulfilled_offer_length_baseOffset +
                            additionalRecipientsLength *
                            OneWord;
                        // Derive size of offer and consideration data.
                        // 2 words (lengths) + 4 (offer data) + 5 (consideration 1) + 5 * ar
                        uint256 offerAndConsiderationSize = OrderFulfilled_baseDataSize +
                            (additionalRecipientsLength * ReceivedItem_size);
                        // Copy offer and consideration data from event data to calldata.
                        MemoryPointer.wrap(offerDataOffset).copy(
                            dstHead.offset(tailOffset),
                            offerAndConsiderationSize
                        );
                        // Increment tail offset, now used to populate extraData array.
                        tailOffset += offerAndConsiderationSize;
                    }
                    // Write empty bytes for extraData.
                    dstHead.offset(ZoneParameters_extraData_head_offset).write(tailOffset);
                    dstHead.offset(tailOffset).write(0);
                    unchecked {
                        // Increment tail offset, now used to populate orderHashes array.
                        tailOffset += OneWord;
                    }
                    // Write offset to orderHashes.
                    dstHead.offset(ZoneParameters_orderHashes_head_offset).write(
                        tailOffset
                    );
                    // Write length = 1 to the orderHashes array.
                    dstHead.offset(tailOffset).write(1);
                    unchecked {
                        // Write the single order hash to the orderHashes array.
                        dstHead.offset(tailOffset + OneWord).writeBytes32(orderHash);
                        // Final size: selector, ZoneParameters pointer, orderHashes & tail.
                        size = ZoneParameters_basicOrderFixedElements_length + tailOffset;
                    }
                }
                /**
                 * @dev Takes a memory pointer to an array of bytes32 values representing
                 *      the order hashes included as part of the fulfillment and a memory
                 *      pointer to a location to copy it to, and copies the source data to
                 *      the destination in memory.
                 *
                 * @param srcLength A memory pointer referencing the order hashes array to
                 *                  be copied (and pointing to the length of the array).
                 * @param dstLength A memory pointer referencing the location in memory to
                 *                  copy the orderHashes array to (and pointing to the
                 *                  length of the copied array).
                 *
                 * @return size The size of the order hashes array (including the length).
                 */
                function _encodeOrderHashes(
                    MemoryPointer srcLength,
                    MemoryPointer dstLength
                ) internal view returns (uint256 size) {
                    // Read length of the array from source and write to destination.
                    uint256 length = srcLength.readUint256();
                    dstLength.write(length);
                    unchecked {
                        // Determine head & tail size as one word per element in the array.
                        uint256 headAndTailSize = length << OneWordShift;
                        // Copy the tail starting from the next element of the source to the
                        // next element of the destination.
                        srcLength.next().copy(dstLength.next(), headAndTailSize);
                        // Set size to the length of the tail plus one word for length.
                        size = headAndTailSize + OneWord;
                    }
                }
                /**
                 * @dev Takes a memory pointer to an offer or consideration array and a
                 *      memory pointer to a location to copy it to, and copies the source
                 *      data to the destination in memory as a SpentItem array.
                 *
                 * @param srcLength A memory pointer referencing the offer or consideration
                 *                  array to be copied as a SpentItem array (and pointing to
                 *                  the length of the original array).
                 * @param dstLength A memory pointer referencing the location in memory to
                 *                  copy the offer array to (and pointing to the length of
                 *                  the copied array).
                 *
                 * @return size The size of the SpentItem array (including the length).
                 */
                function _encodeSpentItems(
                    MemoryPointer srcLength,
                    MemoryPointer dstLength
                ) internal pure returns (uint256 size) {
                    assembly {
                        // Read length of the array from source and write to destination.
                        let length := mload(srcLength)
                        mstore(dstLength, length)
                        // Get pointer to first item's head position in the array,
                        // containing the item's pointer in memory. The head pointer will be
                        // incremented until it reaches the tail position (start of the
                        // array data).
                        let mPtrHead := add(srcLength, OneWord)
                        // Position in memory to write next item for calldata. Since
                        // SpentItem has a fixed length, the array elements do not contain
                        // head elements in calldata, they are concatenated together after
                        // the array length.
                        let cdPtrData := add(dstLength, OneWord)
                        // Pointer to end of array head in memory.
                        let mPtrHeadEnd := add(mPtrHead, shl(OneWordShift, length))
                        for {
                        } lt(mPtrHead, mPtrHeadEnd) {
                        } {
                            // Read pointer to data for array element from head position.
                            let mPtrTail := mload(mPtrHead)
                            // Copy itemType, token, identifier, amount to calldata.
                            mstore(cdPtrData, mload(mPtrTail))
                            mstore(
                                add(cdPtrData, Common_token_offset),
                                mload(add(mPtrTail, Common_token_offset))
                            )
                            mstore(
                                add(cdPtrData, Common_identifier_offset),
                                mload(add(mPtrTail, Common_identifier_offset))
                            )
                            mstore(
                                add(cdPtrData, Common_amount_offset),
                                mload(add(mPtrTail, Common_amount_offset))
                            )
                            mPtrHead := add(mPtrHead, OneWord)
                            cdPtrData := add(cdPtrData, SpentItem_size)
                        }
                        size := add(OneWord, shl(SpentItem_size_shift, length))
                    }
                }
                /**
                 * @dev Takes a memory pointer to an consideration array and a memory
                 *      pointer to a location to copy it to, and copies the source data to
                 *      the destination in memory as a ReceivedItem array.
                 *
                 * @param srcLength A memory pointer referencing the consideration array to
                 *                  be copied as a ReceivedItem array (and pointing to the
                 *                  length of the original array).
                 * @param dstLength A memory pointer referencing the location in memory to
                 *                  copy the consideration array to as a ReceivedItem array
                 *                  (and pointing to the length of the new array).
                 *
                 * @return size The size of the ReceivedItem array (including the length).
                 */
                function _encodeConsiderationAsReceivedItems(
                    MemoryPointer srcLength,
                    MemoryPointer dstLength
                ) internal view returns (uint256 size) {
                    unchecked {
                        // Read length of the array from source and write to destination.
                        uint256 length = srcLength.readUint256();
                        dstLength.write(length);
                        // Get pointer to first item's head position in the array,
                        // containing the item's pointer in memory. The head pointer will be
                        // incremented until it reaches the tail position (start of the
                        // array data).
                        MemoryPointer srcHead = srcLength.next();
                        MemoryPointer srcHeadEnd = srcHead.offset(length << OneWordShift);
                        // Position in memory to write next item for calldata. Since
                        // ReceivedItem has a fixed length, the array elements do not
                        // contain offsets in calldata, they are concatenated together after
                        // the array length.
                        MemoryPointer dstHead = dstLength.next();
                        while (srcHead.lt(srcHeadEnd)) {
                            MemoryPointer srcTail = srcHead.pptr();
                            srcTail.copy(dstHead, ReceivedItem_size);
                            srcHead = srcHead.next();
                            dstHead = dstHead.offset(ReceivedItem_size);
                        }
                        size = OneWord + (length * ReceivedItem_size);
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.17;
            import {
                AdvancedOrder,
                ConsiderationItem,
                CriteriaResolver,
                Fulfillment,
                FulfillmentComponent,
                OfferItem,
                Order,
                OrderParameters,
                ReceivedItem
            } from "./ConsiderationStructs.sol";
            import {
                AdvancedOrder_denominator_offset,
                AdvancedOrder_extraData_offset,
                AdvancedOrder_fixed_segment_0,
                AdvancedOrder_head_size,
                AdvancedOrder_numerator_offset,
                AdvancedOrder_signature_offset,
                AdvancedOrderPlusOrderParameters_head_size,
                Common_amount_offset,
                Common_endAmount_offset,
                ConsiderationItem_size_with_length,
                ConsiderationItem_size,
                CriteriaResolver_criteriaProof_offset,
                CriteriaResolver_fixed_segment_0,
                CriteriaResolver_head_size,
                FourWords,
                FreeMemoryPointerSlot,
                Fulfillment_considerationComponents_offset,
                Fulfillment_head_size,
                FulfillmentComponent_mem_tail_size_shift,
                FulfillmentComponent_mem_tail_size,
                generateOrder_maximum_returndatasize,
                OfferItem_size_with_length,
                OfferItem_size,
                OneWord,
                OneWordShift,
                OnlyFullWordMask,
                Order_head_size,
                Order_signature_offset,
                OrderComponents_OrderParameters_common_head_size,
                OrderParameters_consideration_head_offset,
                OrderParameters_head_size,
                OrderParameters_offer_head_offset,
                OrderParameters_totalOriginalConsiderationItems_offset,
                ReceivedItem_recipient_offset,
                ReceivedItem_size,
                ReceivedItem_size_excluding_recipient,
                SpentItem_size_shift,
                SpentItem_size,
                ThirtyOneBytes,
                TwoWords
            } from "./ConsiderationConstants.sol";
            import {
                CalldataPointer,
                malloc,
                MemoryPointer,
                OffsetOrLengthMask
            } from "../helpers/PointerLibraries.sol";
            contract ConsiderationDecoder {
                /**
                 * @dev Takes a bytes array from calldata and copies it into memory.
                 *
                 * @param cdPtrLength A calldata pointer to the start of the bytes array in
                 *                    calldata which contains the length of the array.
                 *
                 * @return mPtrLength A memory pointer to the start of the bytes array in
                 *                    memory which contains the length of the array.
                 */
                function _decodeBytes(
                    CalldataPointer cdPtrLength
                ) internal pure returns (MemoryPointer mPtrLength) {
                    assembly {
                        // Get the current free memory pointer.
                        mPtrLength := mload(FreeMemoryPointerSlot)
                        // Derive the size of the bytes array, rounding up to nearest word
                        // and adding a word for the length field. Note: masking
                        // `calldataload(cdPtrLength)` is redundant here.
                        let size := add(
                            and(
                                add(calldataload(cdPtrLength), ThirtyOneBytes),
                                OnlyFullWordMask
                            ),
                            OneWord
                        )
                        // Copy bytes from calldata into memory based on pointers and size.
                        calldatacopy(mPtrLength, cdPtrLength, size)
                        // Store the masked value in memory. Note: the value of `size` is at
                        // least 32, meaning the calldatacopy above will at least write to
                        // `[mPtrLength, mPtrLength + 32)`.
                        mstore(
                            mPtrLength,
                            and(calldataload(cdPtrLength), OffsetOrLengthMask)
                        )
                        // Update free memory pointer based on the size of the bytes array.
                        mstore(FreeMemoryPointerSlot, add(mPtrLength, size))
                    }
                }
                /**
                 * @dev Takes an offer array from calldata and copies it into memory.
                 *
                 * @param cdPtrLength A calldata pointer to the start of the offer array
                 *                    in calldata which contains the length of the array.
                 *
                 * @return mPtrLength A memory pointer to the start of the offer array in
                 *                    memory which contains the length of the array.
                 */
                function _decodeOffer(
                    CalldataPointer cdPtrLength
                ) internal pure returns (MemoryPointer mPtrLength) {
                    assembly {
                        // Retrieve length of array, masking to prevent potential overflow.
                        let arrLength := and(calldataload(cdPtrLength), OffsetOrLengthMask)
                        // Get the current free memory pointer.
                        mPtrLength := mload(FreeMemoryPointerSlot)
                        // Write the array length to memory.
                        mstore(mPtrLength, arrLength)
                        // Derive the head by adding one word to the length pointer.
                        let mPtrHead := add(mPtrLength, OneWord)
                        // Derive the tail by adding one word per element (note that structs
                        // are written to memory with an offset per struct element).
                        let mPtrTail := add(mPtrHead, shl(OneWordShift, arrLength))
                        // Track the next tail, beginning with the initial tail value.
                        let mPtrTailNext := mPtrTail
                        // Copy all offer array data into memory at the tail pointer.
                        calldatacopy(
                            mPtrTail,
                            add(cdPtrLength, OneWord),
                            mul(arrLength, OfferItem_size)
                        )
                        // Track the next head pointer, starting with initial head value.
                        let mPtrHeadNext := mPtrHead
                        // Iterate over each head pointer until it reaches the tail.
                        for {
                        } lt(mPtrHeadNext, mPtrTail) {
                        } {
                            // Write the next tail pointer to next head pointer in memory.
                            mstore(mPtrHeadNext, mPtrTailNext)
                            // Increment the next head pointer by one word.
                            mPtrHeadNext := add(mPtrHeadNext, OneWord)
                            // Increment the next tail pointer by the size of an offer item.
                            mPtrTailNext := add(mPtrTailNext, OfferItem_size)
                        }
                        // Update free memory pointer to allocate memory up to end of tail.
                        mstore(FreeMemoryPointerSlot, mPtrTailNext)
                    }
                }
                /**
                 * @dev Takes a consideration array from calldata and copies it into memory.
                 *
                 * @param cdPtrLength A calldata pointer to the start of the consideration
                 *                    array in calldata which contains the length of the
                 *                    array.
                 *
                 * @return mPtrLength A memory pointer to the start of the consideration
                 *                    array in memory which contains the length of the
                 *                    array.
                 */
                function _decodeConsideration(
                    CalldataPointer cdPtrLength
                ) internal pure returns (MemoryPointer mPtrLength) {
                    assembly {
                        // Retrieve length of array, masking to prevent potential overflow.
                        let arrLength := and(calldataload(cdPtrLength), OffsetOrLengthMask)
                        // Get the current free memory pointer.
                        mPtrLength := mload(FreeMemoryPointerSlot)
                        // Write the array length to memory.
                        mstore(mPtrLength, arrLength)
                        // Derive the head by adding one word to the length pointer.
                        let mPtrHead := add(mPtrLength, OneWord)
                        // Derive the tail by adding one word per element (note that structs
                        // are written to memory with an offset per struct element).
                        let mPtrTail := add(mPtrHead, shl(OneWordShift, arrLength))
                        // Track the next tail, beginning with the initial tail value.
                        let mPtrTailNext := mPtrTail
                        // Copy all consideration array data into memory at tail pointer.
                        calldatacopy(
                            mPtrTail,
                            add(cdPtrLength, OneWord),
                            mul(arrLength, ConsiderationItem_size)
                        )
                        // Track the next head pointer, starting with initial head value.
                        let mPtrHeadNext := mPtrHead
                        // Iterate over each head pointer until it reaches the tail.
                        for {
                        } lt(mPtrHeadNext, mPtrTail) {
                        } {
                            // Write the next tail pointer to next head pointer in memory.
                            mstore(mPtrHeadNext, mPtrTailNext)
                            // Increment the next head pointer by one word.
                            mPtrHeadNext := add(mPtrHeadNext, OneWord)
                            // Increment next tail pointer by size of a consideration item.
                            mPtrTailNext := add(mPtrTailNext, ConsiderationItem_size)
                        }
                        // Update free memory pointer to allocate memory up to end of tail.
                        mstore(FreeMemoryPointerSlot, mPtrTailNext)
                    }
                }
                /**
                 * @dev Takes a calldata pointer and memory pointer and copies a referenced
                 *      OrderParameters struct and associated offer and consideration data
                 *      to memory.
                 *
                 * @param cdPtr A calldata pointer for the OrderParameters struct.
                 * @param mPtr A memory pointer to the OrderParameters struct head.
                 */
                function _decodeOrderParametersTo(
                    CalldataPointer cdPtr,
                    MemoryPointer mPtr
                ) internal pure {
                    // Copy the full OrderParameters head from calldata to memory.
                    cdPtr.copy(mPtr, OrderParameters_head_size);
                    // Resolve the offer calldata offset, use that to decode and copy offer
                    // from calldata, and write resultant memory offset to head in memory.
                    mPtr.offset(OrderParameters_offer_head_offset).write(
                        _decodeOffer(cdPtr.pptr(OrderParameters_offer_head_offset))
                    );
                    // Resolve consideration calldata offset, use that to copy consideration
                    // from calldata, and write resultant memory offset to head in memory.
                    mPtr.offset(OrderParameters_consideration_head_offset).write(
                        _decodeConsideration(
                            cdPtr.pptr(OrderParameters_consideration_head_offset)
                        )
                    );
                }
                /**
                 * @dev Takes a calldata pointer to an OrderParameters struct and copies the
                 *      decoded struct to memory.
                 *
                 * @param cdPtr A calldata pointer for the OrderParameters struct.
                 *
                 * @return mPtr A memory pointer to the OrderParameters struct head.
                 */
                function _decodeOrderParameters(
                    CalldataPointer cdPtr
                ) internal pure returns (MemoryPointer mPtr) {
                    // Allocate required memory for the OrderParameters head (offer and
                    // consideration are allocated independently).
                    mPtr = malloc(OrderParameters_head_size);
                    // Decode and copy the order parameters to the newly allocated memory.
                    _decodeOrderParametersTo(cdPtr, mPtr);
                }
                /**
                 * @dev Takes a calldata pointer to an Order struct and copies the decoded
                 *      struct to memory.
                 *
                 * @param cdPtr A calldata pointer for the Order struct.
                 *
                 * @return mPtr A memory pointer to the Order struct head.
                 */
                function _decodeOrder(
                    CalldataPointer cdPtr
                ) internal pure returns (MemoryPointer mPtr) {
                    // Allocate required memory for the Order head (OrderParameters and
                    // signature are allocated independently).
                    mPtr = malloc(Order_head_size);
                    // Resolve OrderParameters calldata offset, use it to decode and copy
                    // from calldata, and write resultant memory offset to head in memory.
                    mPtr.write(_decodeOrderParameters(cdPtr.pptr()));
                    // Resolve signature calldata offset, use that to decode and copy from
                    // calldata, and write resultant memory offset to head in memory.
                    mPtr.offset(Order_signature_offset).write(
                        _decodeBytes(cdPtr.pptr(Order_signature_offset))
                    );
                }
                /**
                 * @dev Takes a calldata pointer to an AdvancedOrder struct and copies the
                 *      decoded struct to memory.
                 *
                 * @param cdPtr A calldata pointer for the AdvancedOrder struct.
                 *
                 * @return mPtr A memory pointer to the AdvancedOrder struct head.
                 */
                function _decodeAdvancedOrder(
                    CalldataPointer cdPtr
                ) internal pure returns (MemoryPointer mPtr) {
                    // Allocate memory for AdvancedOrder head and OrderParameters head.
                    mPtr = malloc(AdvancedOrderPlusOrderParameters_head_size);
                    // Use numerator + denominator calldata offset to decode and copy
                    // from calldata and write resultant memory offset to head in memory.
                    cdPtr.offset(AdvancedOrder_numerator_offset).copy(
                        mPtr.offset(AdvancedOrder_numerator_offset),
                        AdvancedOrder_fixed_segment_0
                    );
                    // Get pointer to memory immediately after advanced order.
                    MemoryPointer mPtrParameters = mPtr.offset(AdvancedOrder_head_size);
                    // Write pptr for advanced order parameters to memory.
                    mPtr.write(mPtrParameters);
                    // Resolve OrderParameters calldata pointer & write to allocated region.
                    _decodeOrderParametersTo(cdPtr.pptr(), mPtrParameters);
                    // Resolve signature calldata offset, use that to decode and copy from
                    // calldata, and write resultant memory offset to head in memory.
                    mPtr.offset(AdvancedOrder_signature_offset).write(
                        _decodeBytes(cdPtr.pptr(AdvancedOrder_signature_offset))
                    );
                    // Resolve extraData calldata offset, use that to decode and copy from
                    // calldata, and write resultant memory offset to head in memory.
                    mPtr.offset(AdvancedOrder_extraData_offset).write(
                        _decodeBytes(cdPtr.pptr(AdvancedOrder_extraData_offset))
                    );
                }
                /**
                 * @dev Allocates a single word of empty bytes in memory and returns the
                 *      pointer to that memory region.
                 *
                 * @return mPtr The memory pointer to the new empty word in memory.
                 */
                function _getEmptyBytesOrArray()
                    internal
                    pure
                    returns (MemoryPointer mPtr)
                {
                    mPtr = malloc(OneWord);
                    mPtr.write(0);
                }
                /**
                 * @dev Takes a calldata pointer to an Order struct and copies the decoded
                 *      struct to memory as an AdvancedOrder.
                 *
                 * @param cdPtr A calldata pointer for the Order struct.
                 *
                 * @return mPtr A memory pointer to the AdvancedOrder struct head.
                 */
                function _decodeOrderAsAdvancedOrder(
                    CalldataPointer cdPtr
                ) internal pure returns (MemoryPointer mPtr) {
                    // Allocate memory for AdvancedOrder head and OrderParameters head.
                    mPtr = malloc(AdvancedOrderPlusOrderParameters_head_size);
                    // Get pointer to memory immediately after advanced order.
                    MemoryPointer mPtrParameters = mPtr.offset(AdvancedOrder_head_size);
                    // Write pptr for advanced order parameters.
                    mPtr.write(mPtrParameters);
                    // Resolve OrderParameters calldata pointer & write to allocated region.
                    _decodeOrderParametersTo(cdPtr.pptr(), mPtrParameters);
                    // Write default Order numerator and denominator values (i.e. 1/1).
                    mPtr.offset(AdvancedOrder_numerator_offset).write(1);
                    mPtr.offset(AdvancedOrder_denominator_offset).write(1);
                    // Resolve signature calldata offset, use that to decode and copy from
                    // calldata, and write resultant memory offset to head in memory.
                    mPtr.offset(AdvancedOrder_signature_offset).write(
                        _decodeBytes(cdPtr.pptr(Order_signature_offset))
                    );
                    // Resolve extraData calldata offset, use that to decode and copy from
                    // calldata, and write resultant memory offset to head in memory.
                    mPtr.offset(AdvancedOrder_extraData_offset).write(
                        _getEmptyBytesOrArray()
                    );
                }
                /**
                 * @dev Takes a calldata pointer to an array of Order structs and copies the
                 *      decoded array to memory as an array of AdvancedOrder structs.
                 *
                 * @param cdPtrLength A calldata pointer to the start of the orders array in
                 *                    calldata which contains the length of the array.
                 *
                 * @return mPtrLength A memory pointer to the start of the array of advanced
                 *                    orders in memory which contains length of the array.
                 */
                function _decodeOrdersAsAdvancedOrders(
                    CalldataPointer cdPtrLength
                ) internal pure returns (MemoryPointer mPtrLength) {
                    // Retrieve length of array, masking to prevent potential overflow.
                    uint256 arrLength = cdPtrLength.readMaskedUint256();
                    unchecked {
                        // Derive offset to the tail based on one word per array element.
                        uint256 tailOffset = arrLength << OneWordShift;
                        // Add one additional word for the length and allocate memory.
                        mPtrLength = malloc(tailOffset + OneWord);
                        // Write the length of the array to memory.
                        mPtrLength.write(arrLength);
                        // Advance to first memory & calldata pointers (e.g. after length).
                        MemoryPointer mPtrHead = mPtrLength.next();
                        CalldataPointer cdPtrHead = cdPtrLength.next();
                        // Iterate over each pointer, word by word, until tail is reached.
                        for (uint256 offset = 0; offset < tailOffset; offset += OneWord) {
                            // Resolve Order calldata offset, use it to decode and copy from
                            // calldata, and write resultant AdvancedOrder offset to memory.
                            mPtrHead.offset(offset).write(
                                _decodeOrderAsAdvancedOrder(cdPtrHead.pptr(offset))
                            );
                        }
                    }
                }
                /**
                 * @dev Takes a calldata pointer to a criteria proof, or an array bytes32
                 *      types, and copies the decoded proof to memory.
                 *
                 * @param cdPtrLength A calldata pointer to the start of the criteria proof
                 *                    in calldata which contains the length of the array.
                 *
                 * @return mPtrLength A memory pointer to the start of the criteria proof
                 *                    in memory which contains length of the array.
                 */
                function _decodeCriteriaProof(
                    CalldataPointer cdPtrLength
                ) internal pure returns (MemoryPointer mPtrLength) {
                    // Retrieve length of array, masking to prevent potential overflow.
                    uint256 arrLength = cdPtrLength.readMaskedUint256();
                    unchecked {
                        // Derive array size based on one word per array element and length.
                        uint256 arrSize = (arrLength + 1) << OneWordShift;
                        // Allocate memory equal to the array size.
                        mPtrLength = malloc(arrSize);
                        // Copy the array from calldata into memory.
                        cdPtrLength.copy(mPtrLength, arrSize);
                    }
                }
                /**
                 * @dev Takes a calldata pointer to a CriteriaResolver struct and copies the
                 *      decoded struct to memory.
                 *
                 * @param cdPtr A calldata pointer for the CriteriaResolver struct.
                 *
                 * @return mPtr A memory pointer to the CriteriaResolver struct head.
                 */
                function _decodeCriteriaResolver(
                    CalldataPointer cdPtr
                ) internal pure returns (MemoryPointer mPtr) {
                    // Allocate required memory for the CriteriaResolver head (the criteria
                    // proof bytes32 array is allocated independently).
                    mPtr = malloc(CriteriaResolver_head_size);
                    // Decode and copy order index, side, index, and identifier from
                    // calldata and write resultant memory offset to head in memory.
                    cdPtr.copy(mPtr, CriteriaResolver_fixed_segment_0);
                    // Resolve criteria proof calldata offset, use it to decode and copy
                    // from calldata, and write resultant memory offset to head in memory.
                    mPtr.offset(CriteriaResolver_criteriaProof_offset).write(
                        _decodeCriteriaProof(
                            cdPtr.pptr(CriteriaResolver_criteriaProof_offset)
                        )
                    );
                }
                /**
                 * @dev Takes an array of criteria resolvers from calldata and copies it
                 *      into memory.
                 *
                 * @param cdPtrLength A calldata pointer to the start of the criteria
                 *                    resolver array in calldata which contains the length
                 *                    of the array.
                 *
                 * @return mPtrLength A memory pointer to the start of the criteria resolver
                 *                    array in memory which contains the length of the
                 *                    array.
                 */
                function _decodeCriteriaResolvers(
                    CalldataPointer cdPtrLength
                ) internal pure returns (MemoryPointer mPtrLength) {
                    // Retrieve length of array, masking to prevent potential overflow.
                    uint256 arrLength = cdPtrLength.readMaskedUint256();
                    unchecked {
                        // Derive offset to the tail based on one word per array element.
                        uint256 tailOffset = arrLength << OneWordShift;
                        // Add one additional word for the length and allocate memory.
                        mPtrLength = malloc(tailOffset + OneWord);
                        // Write the length of the array to memory.
                        mPtrLength.write(arrLength);
                        // Advance to first memory & calldata pointers (e.g. after length).
                        MemoryPointer mPtrHead = mPtrLength.next();
                        CalldataPointer cdPtrHead = cdPtrLength.next();
                        // Iterate over each pointer, word by word, until tail is reached.
                        for (uint256 offset = 0; offset < tailOffset; offset += OneWord) {
                            // Resolve CriteriaResolver calldata offset, use it to decode
                            // and copy from calldata, and write resultant memory offset.
                            mPtrHead.offset(offset).write(
                                _decodeCriteriaResolver(cdPtrHead.pptr(offset))
                            );
                        }
                    }
                }
                /**
                 * @dev Takes an array of orders from calldata and copies it into memory.
                 *
                 * @param cdPtrLength A calldata pointer to the start of the orders array in
                 *                    calldata which contains the length of the array.
                 *
                 * @return mPtrLength A memory pointer to the start of the orders array
                 *                    in memory which contains the length of the array.
                 */
                function _decodeOrders(
                    CalldataPointer cdPtrLength
                ) internal pure returns (MemoryPointer mPtrLength) {
                    // Retrieve length of array, masking to prevent potential overflow.
                    uint256 arrLength = cdPtrLength.readMaskedUint256();
                    unchecked {
                        // Derive offset to the tail based on one word per array element.
                        uint256 tailOffset = arrLength << OneWordShift;
                        // Add one additional word for the length and allocate memory.
                        mPtrLength = malloc(tailOffset + OneWord);
                        // Write the length of the array to memory.
                        mPtrLength.write(arrLength);
                        // Advance to first memory & calldata pointers (e.g. after length).
                        MemoryPointer mPtrHead = mPtrLength.next();
                        CalldataPointer cdPtrHead = cdPtrLength.next();
                        // Iterate over each pointer, word by word, until tail is reached.
                        for (uint256 offset = 0; offset < tailOffset; offset += OneWord) {
                            // Resolve Order calldata offset, use it to decode and copy
                            // from calldata, and write resultant memory offset.
                            mPtrHead.offset(offset).write(
                                _decodeOrder(cdPtrHead.pptr(offset))
                            );
                        }
                    }
                }
                /**
                 * @dev Takes an array of fulfillment components from calldata and copies it
                 *      into memory.
                 *
                 * @param cdPtrLength A calldata pointer to the start of the fulfillment
                 *                    components array in calldata which contains the length
                 *                    of the array.
                 *
                 * @return mPtrLength A memory pointer to the start of the fulfillment
                 *                    components array in memory which contains the length
                 *                    of the array.
                 */
                function _decodeFulfillmentComponents(
                    CalldataPointer cdPtrLength
                ) internal pure returns (MemoryPointer mPtrLength) {
                    assembly {
                        let arrLength := and(calldataload(cdPtrLength), OffsetOrLengthMask)
                        // Get the current free memory pointer.
                        mPtrLength := mload(FreeMemoryPointerSlot)
                        mstore(mPtrLength, arrLength)
                        let mPtrHead := add(mPtrLength, OneWord)
                        let mPtrTail := add(mPtrHead, shl(OneWordShift, arrLength))
                        let mPtrTailNext := mPtrTail
                        calldatacopy(
                            mPtrTail,
                            add(cdPtrLength, OneWord),
                            shl(FulfillmentComponent_mem_tail_size_shift, arrLength)
                        )
                        let mPtrHeadNext := mPtrHead
                        for {
                        } lt(mPtrHeadNext, mPtrTail) {
                        } {
                            mstore(mPtrHeadNext, mPtrTailNext)
                            mPtrHeadNext := add(mPtrHeadNext, OneWord)
                            mPtrTailNext := add(
                                mPtrTailNext,
                                FulfillmentComponent_mem_tail_size
                            )
                        }
                        // Update the free memory pointer.
                        mstore(FreeMemoryPointerSlot, mPtrTailNext)
                    }
                }
                /**
                 * @dev Takes a nested array of fulfillment components from calldata and
                 *      copies it into memory.
                 *
                 * @param cdPtrLength A calldata pointer to the start of the nested
                 *                    fulfillment components array in calldata which
                 *                    contains the length of the array.
                 *
                 * @return mPtrLength A memory pointer to the start of the nested
                 *                    fulfillment components array in memory which
                 *                    contains the length of the array.
                 */
                function _decodeNestedFulfillmentComponents(
                    CalldataPointer cdPtrLength
                ) internal pure returns (MemoryPointer mPtrLength) {
                    // Retrieve length of array, masking to prevent potential overflow.
                    uint256 arrLength = cdPtrLength.readMaskedUint256();
                    unchecked {
                        // Derive offset to the tail based on one word per array element.
                        uint256 tailOffset = arrLength << OneWordShift;
                        // Add one additional word for the length and allocate memory.
                        mPtrLength = malloc(tailOffset + OneWord);
                        // Write the length of the array to memory.
                        mPtrLength.write(arrLength);
                        // Advance to first memory & calldata pointers (e.g. after length).
                        MemoryPointer mPtrHead = mPtrLength.next();
                        CalldataPointer cdPtrHead = cdPtrLength.next();
                        // Iterate over each pointer, word by word, until tail is reached.
                        for (uint256 offset = 0; offset < tailOffset; offset += OneWord) {
                            // Resolve FulfillmentComponents array calldata offset, use it
                            // to decode and copy from calldata, and write memory offset.
                            mPtrHead.offset(offset).write(
                                _decodeFulfillmentComponents(cdPtrHead.pptr(offset))
                            );
                        }
                    }
                }
                /**
                 * @dev Takes an array of advanced orders from calldata and copies it into
                 *      memory.
                 *
                 * @param cdPtrLength A calldata pointer to the start of the advanced orders
                 *                    array in calldata which contains the length of the
                 *                    array.
                 *
                 * @return mPtrLength A memory pointer to the start of the advanced orders
                 *                    array in memory which contains the length of the
                 *                    array.
                 */
                function _decodeAdvancedOrders(
                    CalldataPointer cdPtrLength
                ) internal pure returns (MemoryPointer mPtrLength) {
                    // Retrieve length of array, masking to prevent potential overflow.
                    uint256 arrLength = cdPtrLength.readMaskedUint256();
                    unchecked {
                        // Derive offset to the tail based on one word per array element.
                        uint256 tailOffset = arrLength << OneWordShift;
                        // Add one additional word for the length and allocate memory.
                        mPtrLength = malloc(tailOffset + OneWord);
                        // Write the length of the array to memory.
                        mPtrLength.write(arrLength);
                        // Advance to first memory & calldata pointers (e.g. after length).
                        MemoryPointer mPtrHead = mPtrLength.next();
                        CalldataPointer cdPtrHead = cdPtrLength.next();
                        // Iterate over each pointer, word by word, until tail is reached.
                        for (uint256 offset = 0; offset < tailOffset; offset += OneWord) {
                            // Resolve AdvancedOrder calldata offset, use it to decode and
                            // copy from calldata, and write resultant memory offset.
                            mPtrHead.offset(offset).write(
                                _decodeAdvancedOrder(cdPtrHead.pptr(offset))
                            );
                        }
                    }
                }
                /**
                 * @dev Takes a calldata pointer to a Fulfillment struct and copies the
                 *      decoded struct to memory.
                 *
                 * @param cdPtr A calldata pointer for the Fulfillment struct.
                 *
                 * @return mPtr A memory pointer to the Fulfillment struct head.
                 */
                function _decodeFulfillment(
                    CalldataPointer cdPtr
                ) internal pure returns (MemoryPointer mPtr) {
                    // Allocate required memory for the Fulfillment head (the fulfillment
                    // components arrays are allocated independently).
                    mPtr = malloc(Fulfillment_head_size);
                    // Resolve offerComponents calldata offset, use it to decode and copy
                    // from calldata, and write resultant memory offset to head in memory.
                    mPtr.write(_decodeFulfillmentComponents(cdPtr.pptr()));
                    // Resolve considerationComponents calldata offset, use it to decode and
                    // copy from calldata, and write resultant memory offset to memory head.
                    mPtr.offset(Fulfillment_considerationComponents_offset).write(
                        _decodeFulfillmentComponents(
                            cdPtr.pptr(Fulfillment_considerationComponents_offset)
                        )
                    );
                }
                /**
                 * @dev Takes an array of fulfillments from calldata and copies it into
                 *      memory.
                 *
                 * @param cdPtrLength A calldata pointer to the start of the fulfillments
                 *                    array in calldata which contains the length of the
                 *                    array.
                 *
                 * @return mPtrLength A memory pointer to the start of the fulfillments
                 *                    array in memory which contains the length of the
                 *                    array.
                 */
                function _decodeFulfillments(
                    CalldataPointer cdPtrLength
                ) internal pure returns (MemoryPointer mPtrLength) {
                    // Retrieve length of array, masking to prevent potential overflow.
                    uint256 arrLength = cdPtrLength.readMaskedUint256();
                    unchecked {
                        // Derive offset to the tail based on one word per array element.
                        uint256 tailOffset = arrLength << OneWordShift;
                        // Add one additional word for the length and allocate memory.
                        mPtrLength = malloc(tailOffset + OneWord);
                        // Write the length of the array to memory.
                        mPtrLength.write(arrLength);
                        // Advance to first memory & calldata pointers (e.g. after length).
                        MemoryPointer mPtrHead = mPtrLength.next();
                        CalldataPointer cdPtrHead = cdPtrLength.next();
                        // Iterate over each pointer, word by word, until tail is reached.
                        for (uint256 offset = 0; offset < tailOffset; offset += OneWord) {
                            // Resolve Fulfillment calldata offset, use it to decode and
                            // copy from calldata, and write resultant memory offset.
                            mPtrHead.offset(offset).write(
                                _decodeFulfillment(cdPtrHead.pptr(offset))
                            );
                        }
                    }
                }
                /**
                 * @dev Takes a calldata pointer to an OrderComponents struct and copies the
                 *      decoded struct to memory as an OrderParameters struct (with the
                 *      totalOriginalConsiderationItems value set equal to the length of the
                 *      supplied consideration array).
                 *
                 * @param cdPtr A calldata pointer for the OrderComponents struct.
                 *
                 * @return mPtr A memory pointer to the OrderParameters struct head.
                 */
                function _decodeOrderComponentsAsOrderParameters(
                    CalldataPointer cdPtr
                ) internal pure returns (MemoryPointer mPtr) {
                    // Allocate memory for the OrderParameters head.
                    mPtr = malloc(OrderParameters_head_size);
                    // Copy the full OrderComponents head from calldata to memory.
                    cdPtr.copy(mPtr, OrderComponents_OrderParameters_common_head_size);
                    // Resolve the offer calldata offset, use that to decode and copy offer
                    // from calldata, and write resultant memory offset to head in memory.
                    mPtr.offset(OrderParameters_offer_head_offset).write(
                        _decodeOffer(cdPtr.pptr(OrderParameters_offer_head_offset))
                    );
                    // Resolve consideration calldata offset, use that to copy consideration
                    // from calldata, and write resultant memory offset to head in memory.
                    MemoryPointer consideration = _decodeConsideration(
                        cdPtr.pptr(OrderParameters_consideration_head_offset)
                    );
                    mPtr.offset(OrderParameters_consideration_head_offset).write(
                        consideration
                    );
                    // Write masked consideration length to totalOriginalConsiderationItems.
                    mPtr
                        .offset(OrderParameters_totalOriginalConsiderationItems_offset)
                        .write(consideration.readUint256());
                }
                /**
                 * @dev Decodes the returndata from a call to generateOrder, or returns
                 *      empty arrays and a boolean signifying that the returndata does not
                 *      adhere to a valid encoding scheme if it cannot be decoded.
                 *
                 * @return invalidEncoding A boolean signifying whether the returndata has
                 *                         an invalid encoding.
                 * @return offer           The decoded offer array.
                 * @return consideration   The decoded consideration array.
                 */
                function _decodeGenerateOrderReturndata()
                    internal
                    pure
                    returns (
                        uint256 invalidEncoding,
                        MemoryPointer offer,
                        MemoryPointer consideration
                    )
                {
                    assembly {
                        // Check that returndatasize is at least four words: offerOffset,
                        // considerationOffset, offerLength, & considerationLength
                        invalidEncoding := lt(returndatasize(), FourWords)
                        let offsetOffer
                        let offsetConsideration
                        let offerLength
                        let considerationLength
                        // Proceed if enough returndata is present to continue evaluation.
                        if iszero(invalidEncoding) {
                            // Copy first two words of returndata (the offsets to offer and
                            // consideration array lengths) to scratch space.
                            returndatacopy(0, 0, TwoWords)
                            offsetOffer := mload(0)
                            offsetConsideration := mload(OneWord)
                            // If valid length, check that offsets are within returndata.
                            let invalidOfferOffset := gt(offsetOffer, returndatasize())
                            let invalidConsiderationOffset := gt(
                                offsetConsideration,
                                returndatasize()
                            )
                            // Only proceed if length (and thus encoding) is valid so far.
                            invalidEncoding := or(
                                invalidOfferOffset,
                                invalidConsiderationOffset
                            )
                            if iszero(invalidEncoding) {
                                // Copy length of offer array to scratch space.
                                returndatacopy(0, offsetOffer, OneWord)
                                offerLength := mload(0)
                                // Copy length of consideration array to scratch space.
                                returndatacopy(OneWord, offsetConsideration, OneWord)
                                considerationLength := mload(OneWord)
                                {
                                    // Calculate total size of offer & consideration arrays.
                                    let totalOfferSize := shl(
                                        SpentItem_size_shift,
                                        offerLength
                                    )
                                    let totalConsiderationSize := mul(
                                        ReceivedItem_size,
                                        considerationLength
                                    )
                                    // Add 4 words to total size to cover the offset and
                                    // length fields of the two arrays.
                                    let totalSize := add(
                                        FourWords,
                                        add(totalOfferSize, totalConsiderationSize)
                                    )
                                    // Don't continue if returndatasize exceeds 65535 bytes
                                    // or is greater than the calculated size.
                                    invalidEncoding := or(
                                        gt(
                                            or(offerLength, considerationLength),
                                            generateOrder_maximum_returndatasize
                                        ),
                                        gt(totalSize, returndatasize())
                                    )
                                    // Set first word of scratch space to 0 so length of
                                    // offer/consideration are set to 0 on invalid encoding.
                                    mstore(0, 0)
                                }
                            }
                        }
                        if iszero(invalidEncoding) {
                            offer := copySpentItemsAsOfferItems(
                                add(offsetOffer, OneWord),
                                offerLength
                            )
                            consideration := copyReceivedItemsAsConsiderationItems(
                                add(offsetConsideration, OneWord),
                                considerationLength
                            )
                        }
                        function copySpentItemsAsOfferItems(rdPtrHead, length)
                            -> mPtrLength
                        {
                            // Retrieve the current free memory pointer.
                            mPtrLength := mload(FreeMemoryPointerSlot)
                            // Allocate memory for the array.
                            mstore(
                                FreeMemoryPointerSlot,
                                add(
                                    mPtrLength,
                                    add(OneWord, mul(length, OfferItem_size_with_length))
                                )
                            )
                            // Write the length of the array to the start of free memory.
                            mstore(mPtrLength, length)
                            // Use offset from length to minimize stack depth.
                            let headOffsetFromLength := OneWord
                            let headSizeWithLength := shl(OneWordShift, add(1, length))
                            let mPtrTailNext := add(mPtrLength, headSizeWithLength)
                            // Iterate over each element.
                            for {
                            } lt(headOffsetFromLength, headSizeWithLength) {
                            } {
                                // Write the memory pointer to the accompanying head offset.
                                mstore(add(mPtrLength, headOffsetFromLength), mPtrTailNext)
                                // Copy itemType, token, identifier and amount.
                                returndatacopy(mPtrTailNext, rdPtrHead, SpentItem_size)
                                // Copy amount to endAmount.
                                mstore(
                                    add(mPtrTailNext, Common_endAmount_offset),
                                    mload(add(mPtrTailNext, Common_amount_offset))
                                )
                                // Update read pointer, next tail pointer, and head offset.
                                rdPtrHead := add(rdPtrHead, SpentItem_size)
                                mPtrTailNext := add(mPtrTailNext, OfferItem_size)
                                headOffsetFromLength := add(headOffsetFromLength, OneWord)
                            }
                        }
                        function copyReceivedItemsAsConsiderationItems(rdPtrHead, length)
                            -> mPtrLength
                        {
                            // Retrieve the current free memory pointer.
                            mPtrLength := mload(FreeMemoryPointerSlot)
                            // Allocate memory for the array.
                            mstore(
                                FreeMemoryPointerSlot,
                                add(
                                    mPtrLength,
                                    add(
                                        OneWord,
                                        mul(length, ConsiderationItem_size_with_length)
                                    )
                                )
                            )
                            // Write the length of the array to the start of free memory.
                            mstore(mPtrLength, length)
                            // Use offset from length to minimize stack depth.
                            let headOffsetFromLength := OneWord
                            let headSizeWithLength := shl(OneWordShift, add(1, length))
                            let mPtrTailNext := add(mPtrLength, headSizeWithLength)
                            // Iterate over each element.
                            for {
                            } lt(headOffsetFromLength, headSizeWithLength) {
                            } {
                                // Write the memory pointer to the accompanying head offset.
                                mstore(add(mPtrLength, headOffsetFromLength), mPtrTailNext)
                                // Copy itemType, token, identifier and amount.
                                returndatacopy(
                                    mPtrTailNext,
                                    rdPtrHead,
                                    ReceivedItem_size_excluding_recipient
                                )
                                // Copy amount and recipient.
                                returndatacopy(
                                    add(mPtrTailNext, Common_endAmount_offset),
                                    add(rdPtrHead, Common_amount_offset),
                                    TwoWords
                                )
                                // Update read pointer, next tail pointer, and head offset.
                                rdPtrHead := add(rdPtrHead, ReceivedItem_size)
                                mPtrTailNext := add(mPtrTailNext, ConsiderationItem_size)
                                headOffsetFromLength := add(headOffsetFromLength, OneWord)
                            }
                        }
                    }
                }
                /**
                 * @dev Converts a function returning _decodeGenerateOrderReturndata types
                 *      into a function returning offer and consideration types.
                 *
                 * @param inFn The input function, taking no arguments and returning an
                 *             error buffer, spent item array, and received item array.
                 *
                 * @return outFn The output function, taking no arguments and returning an
                 *               error buffer, offer array, and consideration array.
                 */
                function _convertGetGeneratedOrderResult(
                    function()
                        internal
                        pure
                        returns (uint256, MemoryPointer, MemoryPointer) inFn
                )
                    internal
                    pure
                    returns (
                        function()
                            internal
                            pure
                            returns (
                                uint256,
                                OfferItem[] memory,
                                ConsiderationItem[] memory
                            ) outFn
                    )
                {
                    assembly {
                        outFn := inFn
                    }
                }
                /**
                 * @dev Converts a function taking ReceivedItem, address, bytes32, and bytes
                 *      types (e.g. the _transfer function) into a function taking
                 *      OfferItem, address, bytes32, and bytes types.
                 *
                 * @param inFn The input function, taking ReceivedItem, address, bytes32,
                 *             and bytes types (e.g. the _transfer function).
                 *
                 * @return outFn The output function, taking OfferItem, address, bytes32,
                 *               and bytes types.
                 */
                function _toOfferItemInput(
                    function(ReceivedItem memory, address, bytes32, bytes memory)
                        internal inFn
                )
                    internal
                    pure
                    returns (
                        function(OfferItem memory, address, bytes32, bytes memory)
                            internal outFn
                    )
                {
                    assembly {
                        outFn := inFn
                    }
                }
                /**
                 * @dev Converts a function taking ReceivedItem, address, bytes32, and bytes
                 *      types (e.g. the _transfer function) into a function taking
                 *      ConsiderationItem, address, bytes32, and bytes types.
                 *
                 * @param inFn The input function, taking ReceivedItem, address, bytes32,
                 *             and bytes types (e.g. the _transfer function).
                 *
                 * @return outFn The output function, taking ConsiderationItem, address,
                 *               bytes32, and bytes types.
                 */
                function _toConsiderationItemInput(
                    function(ReceivedItem memory, address, bytes32, bytes memory)
                        internal inFn
                )
                    internal
                    pure
                    returns (
                        function(ConsiderationItem memory, address, bytes32, bytes memory)
                            internal outFn
                    )
                {
                    assembly {
                        outFn := inFn
                    }
                }
                /**
                 * @dev Converts a function taking a calldata pointer and returning a memory
                 *      pointer into a function taking that calldata pointer and returning
                 *      an OrderParameters type.
                 *
                 * @param inFn The input function, taking an arbitrary calldata pointer and
                 *             returning an arbitrary memory pointer.
                 *
                 * @return outFn The output function, taking an arbitrary calldata pointer
                 *               and returning an OrderParameters type.
                 */
                function _toOrderParametersReturnType(
                    function(CalldataPointer) internal pure returns (MemoryPointer) inFn
                )
                    internal
                    pure
                    returns (
                        function(CalldataPointer)
                            internal
                            pure
                            returns (OrderParameters memory) outFn
                    )
                {
                    assembly {
                        outFn := inFn
                    }
                }
                /**
                 * @dev Converts a function taking a calldata pointer and returning a memory
                 *      pointer into a function taking that calldata pointer and returning
                 *      an AdvancedOrder type.
                 *
                 * @param inFn The input function, taking an arbitrary calldata pointer and
                 *             returning an arbitrary memory pointer.
                 *
                 * @return outFn The output function, taking an arbitrary calldata pointer
                 *               and returning an AdvancedOrder type.
                 */
                function _toAdvancedOrderReturnType(
                    function(CalldataPointer) internal pure returns (MemoryPointer) inFn
                )
                    internal
                    pure
                    returns (
                        function(CalldataPointer)
                            internal
                            pure
                            returns (AdvancedOrder memory) outFn
                    )
                {
                    assembly {
                        outFn := inFn
                    }
                }
                /**
                 * @dev Converts a function taking a calldata pointer and returning a memory
                 *      pointer into a function taking that calldata pointer and returning
                 *      a dynamic array of CriteriaResolver types.
                 *
                 * @param inFn The input function, taking an arbitrary calldata pointer and
                 *             returning an arbitrary memory pointer.
                 *
                 * @return outFn The output function, taking an arbitrary calldata pointer
                 *               and returning a dynamic array of CriteriaResolver types.
                 */
                function _toCriteriaResolversReturnType(
                    function(CalldataPointer) internal pure returns (MemoryPointer) inFn
                )
                    internal
                    pure
                    returns (
                        function(CalldataPointer)
                            internal
                            pure
                            returns (CriteriaResolver[] memory) outFn
                    )
                {
                    assembly {
                        outFn := inFn
                    }
                }
                /**
                 * @dev Converts a function taking a calldata pointer and returning a memory
                 *      pointer into a function taking that calldata pointer and returning
                 *      a dynamic array of Order types.
                 *
                 * @param inFn The input function, taking an arbitrary calldata pointer and
                 *             returning an arbitrary memory pointer.
                 *
                 * @return outFn The output function, taking an arbitrary calldata pointer
                 *               and returning a dynamic array of Order types.
                 */
                function _toOrdersReturnType(
                    function(CalldataPointer) internal pure returns (MemoryPointer) inFn
                )
                    internal
                    pure
                    returns (
                        function(CalldataPointer)
                            internal
                            pure
                            returns (Order[] memory) outFn
                    )
                {
                    assembly {
                        outFn := inFn
                    }
                }
                /**
                 * @dev Converts a function taking a calldata pointer and returning a memory
                 *      pointer into a function taking that calldata pointer and returning
                 *      a nested dynamic array of dynamic arrays of FulfillmentComponent
                 *      types.
                 *
                 * @param inFn The input function, taking an arbitrary calldata pointer and
                 *             returning an arbitrary memory pointer.
                 *
                 * @return outFn The output function, taking an arbitrary calldata pointer
                 *               and returning a nested dynamic array of dynamic arrays of
                 *               FulfillmentComponent types.
                 */
                function _toNestedFulfillmentComponentsReturnType(
                    function(CalldataPointer) internal pure returns (MemoryPointer) inFn
                )
                    internal
                    pure
                    returns (
                        function(CalldataPointer)
                            internal
                            pure
                            returns (FulfillmentComponent[][] memory) outFn
                    )
                {
                    assembly {
                        outFn := inFn
                    }
                }
                /**
                 * @dev Converts a function taking a calldata pointer and returning a memory
                 *      pointer into a function taking that calldata pointer and returning
                 *      a dynamic array of AdvancedOrder types.
                 *
                 * @param inFn The input function, taking an arbitrary calldata pointer and
                 *             returning an arbitrary memory pointer.
                 *
                 * @return outFn The output function, taking an arbitrary calldata pointer
                 *               and returning a dynamic array of AdvancedOrder types.
                 */
                function _toAdvancedOrdersReturnType(
                    function(CalldataPointer) internal pure returns (MemoryPointer) inFn
                )
                    internal
                    pure
                    returns (
                        function(CalldataPointer)
                            internal
                            pure
                            returns (AdvancedOrder[] memory) outFn
                    )
                {
                    assembly {
                        outFn := inFn
                    }
                }
                /**
                 * @dev Converts a function taking a calldata pointer and returning a memory
                 *      pointer into a function taking that calldata pointer and returning
                 *      a dynamic array of Fulfillment types.
                 *
                 * @param inFn The input function, taking an arbitrary calldata pointer and
                 *             returning an arbitrary memory pointer.
                 *
                 * @return outFn The output function, taking an arbitrary calldata pointer
                 *               and returning a dynamic array of Fulfillment types.
                 */
                function _toFulfillmentsReturnType(
                    function(CalldataPointer) internal pure returns (MemoryPointer) inFn
                )
                    internal
                    pure
                    returns (
                        function(CalldataPointer)
                            internal
                            pure
                            returns (Fulfillment[] memory) outFn
                    )
                {
                    assembly {
                        outFn := inFn
                    }
                }
                /**
                 * @dev Caches the endAmount in an offer item and replaces it with
                 * a given recipient so that its memory may be reused as a temporary
                 * ReceivedItem.
                 *
                 * @param offerItem The offer item.
                 * @param recipient The recipient.
                 *
                 * @return originalEndAmount The original end amount.
                 */
                function _replaceEndAmountWithRecipient(
                    OfferItem memory offerItem,
                    address recipient
                ) internal pure returns (uint256 originalEndAmount) {
                    assembly {
                        // Derive the pointer to the end amount on the offer item.
                        let endAmountPtr := add(offerItem, ReceivedItem_recipient_offset)
                        // Retrieve the value of the end amount on the offer item.
                        originalEndAmount := mload(endAmountPtr)
                        // Write recipient to received item at the offer end amount pointer.
                        mstore(endAmountPtr, recipient)
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.13;
            /**
             * @title ConduitControllerInterface
             * @author 0age
             * @notice ConduitControllerInterface contains all external function interfaces,
             *         structs, events, and errors for the conduit controller.
             */
            interface ConduitControllerInterface {
                /**
                 * @dev Track the conduit key, current owner, new potential owner, and open
                 *      channels for each deployed conduit.
                 */
                struct ConduitProperties {
                    bytes32 key;
                    address owner;
                    address potentialOwner;
                    address[] channels;
                    mapping(address => uint256) channelIndexesPlusOne;
                }
                /**
                 * @dev Emit an event whenever a new conduit is created.
                 *
                 * @param conduit    The newly created conduit.
                 * @param conduitKey The conduit key used to create the new conduit.
                 */
                event NewConduit(address conduit, bytes32 conduitKey);
                /**
                 * @dev Emit an event whenever conduit ownership is transferred.
                 *
                 * @param conduit       The conduit for which ownership has been
                 *                      transferred.
                 * @param previousOwner The previous owner of the conduit.
                 * @param newOwner      The new owner of the conduit.
                 */
                event OwnershipTransferred(
                    address indexed conduit,
                    address indexed previousOwner,
                    address indexed newOwner
                );
                /**
                 * @dev Emit an event whenever a conduit owner registers a new potential
                 *      owner for that conduit.
                 *
                 * @param newPotentialOwner The new potential owner of the conduit.
                 */
                event PotentialOwnerUpdated(address indexed newPotentialOwner);
                /**
                 * @dev Revert with an error when attempting to create a new conduit using a
                 *      conduit key where the first twenty bytes of the key do not match the
                 *      address of the caller.
                 */
                error InvalidCreator();
                /**
                 * @dev Revert with an error when attempting to create a new conduit when no
                 *      initial owner address is supplied.
                 */
                error InvalidInitialOwner();
                /**
                 * @dev Revert with an error when attempting to set a new potential owner
                 *      that is already set.
                 */
                error NewPotentialOwnerAlreadySet(
                    address conduit,
                    address newPotentialOwner
                );
                /**
                 * @dev Revert with an error when attempting to cancel ownership transfer
                 *      when no new potential owner is currently set.
                 */
                error NoPotentialOwnerCurrentlySet(address conduit);
                /**
                 * @dev Revert with an error when attempting to interact with a conduit that
                 *      does not yet exist.
                 */
                error NoConduit();
                /**
                 * @dev Revert with an error when attempting to create a conduit that
                 *      already exists.
                 */
                error ConduitAlreadyExists(address conduit);
                /**
                 * @dev Revert with an error when attempting to update channels or transfer
                 *      ownership of a conduit when the caller is not the owner of the
                 *      conduit in question.
                 */
                error CallerIsNotOwner(address conduit);
                /**
                 * @dev Revert with an error when attempting to register a new potential
                 *      owner and supplying the null address.
                 */
                error NewPotentialOwnerIsZeroAddress(address conduit);
                /**
                 * @dev Revert with an error when attempting to claim ownership of a conduit
                 *      with a caller that is not the current potential owner for the
                 *      conduit in question.
                 */
                error CallerIsNotNewPotentialOwner(address conduit);
                /**
                 * @dev Revert with an error when attempting to retrieve a channel using an
                 *      index that is out of range.
                 */
                error ChannelOutOfRange(address conduit);
                /**
                 * @notice Deploy a new conduit using a supplied conduit key and assigning
                 *         an initial owner for the deployed conduit. Note that the first
                 *         twenty bytes of the supplied conduit key must match the caller
                 *         and that a new conduit cannot be created if one has already been
                 *         deployed using the same conduit key.
                 *
                 * @param conduitKey   The conduit key used to deploy the conduit. Note that
                 *                     the first twenty bytes of the conduit key must match
                 *                     the caller of this contract.
                 * @param initialOwner The initial owner to set for the new conduit.
                 *
                 * @return conduit The address of the newly deployed conduit.
                 */
                function createConduit(
                    bytes32 conduitKey,
                    address initialOwner
                ) external returns (address conduit);
                /**
                 * @notice Open or close a channel on a given conduit, thereby allowing the
                 *         specified account to execute transfers against that conduit.
                 *         Extreme care must be taken when updating channels, as malicious
                 *         or vulnerable channels can transfer any ERC20, ERC721 and ERC1155
                 *         tokens where the token holder has granted the conduit approval.
                 *         Only the owner of the conduit in question may call this function.
                 *
                 * @param conduit The conduit for which to open or close the channel.
                 * @param channel The channel to open or close on the conduit.
                 * @param isOpen  A boolean indicating whether to open or close the channel.
                 */
                function updateChannel(
                    address conduit,
                    address channel,
                    bool isOpen
                ) external;
                /**
                 * @notice Initiate conduit ownership transfer by assigning a new potential
                 *         owner for the given conduit. Once set, the new potential owner
                 *         may call `acceptOwnership` to claim ownership of the conduit.
                 *         Only the owner of the conduit in question may call this function.
                 *
                 * @param conduit The conduit for which to initiate ownership transfer.
                 * @param newPotentialOwner The new potential owner of the conduit.
                 */
                function transferOwnership(
                    address conduit,
                    address newPotentialOwner
                ) external;
                /**
                 * @notice Clear the currently set potential owner, if any, from a conduit.
                 *         Only the owner of the conduit in question may call this function.
                 *
                 * @param conduit The conduit for which to cancel ownership transfer.
                 */
                function cancelOwnershipTransfer(address conduit) external;
                /**
                 * @notice Accept ownership of a supplied conduit. Only accounts that the
                 *         current owner has set as the new potential owner may call this
                 *         function.
                 *
                 * @param conduit The conduit for which to accept ownership.
                 */
                function acceptOwnership(address conduit) external;
                /**
                 * @notice Retrieve the current owner of a deployed conduit.
                 *
                 * @param conduit The conduit for which to retrieve the associated owner.
                 *
                 * @return owner The owner of the supplied conduit.
                 */
                function ownerOf(address conduit) external view returns (address owner);
                /**
                 * @notice Retrieve the conduit key for a deployed conduit via reverse
                 *         lookup.
                 *
                 * @param conduit The conduit for which to retrieve the associated conduit
                 *                key.
                 *
                 * @return conduitKey The conduit key used to deploy the supplied conduit.
                 */
                function getKey(address conduit) external view returns (bytes32 conduitKey);
                /**
                 * @notice Derive the conduit associated with a given conduit key and
                 *         determine whether that conduit exists (i.e. whether it has been
                 *         deployed).
                 *
                 * @param conduitKey The conduit key used to derive the conduit.
                 *
                 * @return conduit The derived address of the conduit.
                 * @return exists  A boolean indicating whether the derived conduit has been
                 *                 deployed or not.
                 */
                function getConduit(
                    bytes32 conduitKey
                ) external view returns (address conduit, bool exists);
                /**
                 * @notice Retrieve the potential owner, if any, for a given conduit. The
                 *         current owner may set a new potential owner via
                 *         `transferOwnership` and that owner may then accept ownership of
                 *         the conduit in question via `acceptOwnership`.
                 *
                 * @param conduit The conduit for which to retrieve the potential owner.
                 *
                 * @return potentialOwner The potential owner, if any, for the conduit.
                 */
                function getPotentialOwner(
                    address conduit
                ) external view returns (address potentialOwner);
                /**
                 * @notice Retrieve the status (either open or closed) of a given channel on
                 *         a conduit.
                 *
                 * @param conduit The conduit for which to retrieve the channel status.
                 * @param channel The channel for which to retrieve the status.
                 *
                 * @return isOpen The status of the channel on the given conduit.
                 */
                function getChannelStatus(
                    address conduit,
                    address channel
                ) external view returns (bool isOpen);
                /**
                 * @notice Retrieve the total number of open channels for a given conduit.
                 *
                 * @param conduit The conduit for which to retrieve the total channel count.
                 *
                 * @return totalChannels The total number of open channels for the conduit.
                 */
                function getTotalChannels(
                    address conduit
                ) external view returns (uint256 totalChannels);
                /**
                 * @notice Retrieve an open channel at a specific index for a given conduit.
                 *         Note that the index of a channel can change as a result of other
                 *         channels being closed on the conduit.
                 *
                 * @param conduit      The conduit for which to retrieve the open channel.
                 * @param channelIndex The index of the channel in question.
                 *
                 * @return channel The open channel, if any, at the specified channel index.
                 */
                function getChannel(
                    address conduit,
                    uint256 channelIndex
                ) external view returns (address channel);
                /**
                 * @notice Retrieve all open channels for a given conduit. Note that calling
                 *         this function for a conduit with many channels will revert with
                 *         an out-of-gas error.
                 *
                 * @param conduit The conduit for which to retrieve open channels.
                 *
                 * @return channels An array of open channels on the given conduit.
                 */
                function getChannels(
                    address conduit
                ) external view returns (address[] memory channels);
                /**
                 * @dev Retrieve the conduit creation code and runtime code hashes.
                 */
                function getConduitCodeHashes()
                    external
                    view
                    returns (bytes32 creationCodeHash, bytes32 runtimeCodeHash);
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.13;
            /**
             * @title SignatureVerificationErrors
             * @author 0age
             * @notice SignatureVerificationErrors contains all errors related to signature
             *         verification.
             */
            interface SignatureVerificationErrors {
                /**
                 * @dev Revert with an error when a signature that does not contain a v
                 *      value of 27 or 28 has been supplied.
                 *
                 * @param v The invalid v value.
                 */
                error BadSignatureV(uint8 v);
                /**
                 * @dev Revert with an error when the signer recovered by the supplied
                 *      signature does not match the offerer or an allowed EIP-1271 signer
                 *      as specified by the offerer in the event they are a contract.
                 */
                error InvalidSigner();
                /**
                 * @dev Revert with an error when a signer cannot be recovered from the
                 *      supplied signature.
                 */
                error InvalidSignature();
                /**
                 * @dev Revert with an error when an EIP-1271 call to an account fails.
                 */
                error BadContractSignature();
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.13;
            /*
             * -------------------------- Disambiguation & Other Notes ---------------------
             *    - The term "head" is used as it is in the documentation for ABI encoding,
             *      but only in reference to dynamic types, i.e. it always refers to the
             *      offset or pointer to the body of a dynamic type. In calldata, the head
             *      is always an offset (relative to the parent object), while in memory,
             *      the head is always the pointer to the body. More information found here:
             *      https://docs.soliditylang.org/en/v0.8.17/abi-spec.html#argument-encoding
             *        - Note that the length of an array is separate from and precedes the
             *          head of the array.
             *
             *    - The term "body" is used in place of the term "head" used in the ABI
             *      documentation. It refers to the start of the data for a dynamic type,
             *      e.g. the first word of a struct or the first word of the first element
             *      in an array.
             *
             *    - The term "pointer" is used to describe the absolute position of a value
             *      and never an offset relative to another value.
             *        - The suffix "_ptr" refers to a memory pointer.
             *        - The suffix "_cdPtr" refers to a calldata pointer.
             *
             *    - The term "offset" is used to describe the position of a value relative
             *      to some parent value. For example, OrderParameters_conduit_offset is the
             *      offset to the "conduit" value in the OrderParameters struct relative to
             *      the start of the body.
             *        - Note: Offsets are used to derive pointers.
             *
             *    - Some structs have pointers defined for all of their fields in this file.
             *      Lines which are commented out are fields that are not used in the
             *      codebase but have been left in for readability.
             */
            uint256 constant ThirtyOneBytes = 0x1f;
            uint256 constant OneWord = 0x20;
            uint256 constant TwoWords = 0x40;
            uint256 constant ThreeWords = 0x60;
            uint256 constant OneWordShift = 0x5;
            uint256 constant TwoWordsShift = 0x6;
            uint256 constant FreeMemoryPointerSlot = 0x40;
            uint256 constant ZeroSlot = 0x60;
            uint256 constant DefaultFreeMemoryPointer = 0x80;
            uint256 constant Slot0x80 = 0x80;
            uint256 constant Slot0xA0 = 0xa0;
            uint256 constant Slot0xC0 = 0xc0;
            uint256 constant Generic_error_selector_offset = 0x1c;
            // abi.encodeWithSignature("transferFrom(address,address,uint256)")
            uint256 constant ERC20_transferFrom_signature = (
                0x23b872dd00000000000000000000000000000000000000000000000000000000
            );
            uint256 constant ERC20_transferFrom_sig_ptr = 0x0;
            uint256 constant ERC20_transferFrom_from_ptr = 0x04;
            uint256 constant ERC20_transferFrom_to_ptr = 0x24;
            uint256 constant ERC20_transferFrom_amount_ptr = 0x44;
            uint256 constant ERC20_transferFrom_length = 0x64; // 4 + 32 * 3 == 100
            // abi.encodeWithSignature(
            //     "safeTransferFrom(address,address,uint256,uint256,bytes)"
            // )
            uint256 constant ERC1155_safeTransferFrom_signature = (
                0xf242432a00000000000000000000000000000000000000000000000000000000
            );
            uint256 constant ERC1155_safeTransferFrom_sig_ptr = 0x0;
            uint256 constant ERC1155_safeTransferFrom_from_ptr = 0x04;
            uint256 constant ERC1155_safeTransferFrom_to_ptr = 0x24;
            uint256 constant ERC1155_safeTransferFrom_id_ptr = 0x44;
            uint256 constant ERC1155_safeTransferFrom_amount_ptr = 0x64;
            uint256 constant ERC1155_safeTransferFrom_data_offset_ptr = 0x84;
            uint256 constant ERC1155_safeTransferFrom_data_length_ptr = 0xa4;
            uint256 constant ERC1155_safeTransferFrom_length = 0xc4; // 4 + 32 * 6 == 196
            uint256 constant ERC1155_safeTransferFrom_data_length_offset = 0xa0;
            // abi.encodeWithSignature(
            //     "safeBatchTransferFrom(address,address,uint256[],uint256[],bytes)"
            // )
            uint256 constant ERC1155_safeBatchTransferFrom_signature = (
                0x2eb2c2d600000000000000000000000000000000000000000000000000000000
            );
            // bytes4 constant ERC1155_safeBatchTransferFrom_selector = bytes4(
            //     bytes32(ERC1155_safeBatchTransferFrom_signature)
            // );
            uint256 constant ERC721_transferFrom_signature = (
                0x23b872dd00000000000000000000000000000000000000000000000000000000
            );
            uint256 constant ERC721_transferFrom_sig_ptr = 0x0;
            uint256 constant ERC721_transferFrom_from_ptr = 0x04;
            uint256 constant ERC721_transferFrom_to_ptr = 0x24;
            uint256 constant ERC721_transferFrom_id_ptr = 0x44;
            uint256 constant ERC721_transferFrom_length = 0x64; // 4 + 32 * 3 == 100
            /*
             *  error NoContract(address account)
             *    - Defined in TokenTransferrerErrors.sol
             *  Memory layout:
             *    - 0x00: Left-padded selector (data begins at 0x1c)
             *    - 0x00: account
             * Revert buffer is memory[0x1c:0x40]
             */
            uint256 constant NoContract_error_selector = 0x5f15d672;
            uint256 constant NoContract_error_account_ptr = 0x20;
            uint256 constant NoContract_error_length = 0x24;
            /*
             *  error TokenTransferGenericFailure(
             *      address token,
             *      address from,
             *      address to,
             *      uint256 identifier,
             *      uint256 amount
             *  )
             *    - Defined in TokenTransferrerErrors.sol
             *  Memory layout:
             *    - 0x00: Left-padded selector (data begins at 0x1c)
             *    - 0x20: token
             *    - 0x40: from
             *    - 0x60: to
             *    - 0x80: identifier
             *    - 0xa0: amount
             * Revert buffer is memory[0x1c:0xc0]
             */
            uint256 constant TokenTransferGenericFailure_error_selector = 0xf486bc87;
            uint256 constant TokenTransferGenericFailure_error_token_ptr = 0x20;
            uint256 constant TokenTransferGenericFailure_error_from_ptr = 0x40;
            uint256 constant TokenTransferGenericFailure_error_to_ptr = 0x60;
            uint256 constant TokenTransferGenericFailure_error_identifier_ptr = 0x80;
            uint256 constant TokenTransferGenericFailure_err_identifier_ptr = 0x80;
            uint256 constant TokenTransferGenericFailure_error_amount_ptr = 0xa0;
            uint256 constant TokenTransferGenericFailure_error_length = 0xa4;
            uint256 constant ExtraGasBuffer = 0x20;
            uint256 constant CostPerWord = 0x3;
            uint256 constant MemoryExpansionCoefficientShift = 0x9;
            // Values are offset by 32 bytes in order to write the token to the beginning
            // in the event of a revert
            uint256 constant BatchTransfer1155Params_ptr = 0x24;
            uint256 constant BatchTransfer1155Params_ids_head_ptr = 0x64;
            uint256 constant BatchTransfer1155Params_amounts_head_ptr = 0x84;
            uint256 constant BatchTransfer1155Params_data_head_ptr = 0xa4;
            uint256 constant BatchTransfer1155Params_data_length_basePtr = 0xc4;
            uint256 constant BatchTransfer1155Params_calldata_baseSize = 0xc4;
            uint256 constant BatchTransfer1155Params_ids_length_ptr = 0xc4;
            uint256 constant BatchTransfer1155Params_ids_length_offset = 0xa0;
            // uint256 constant BatchTransfer1155Params_amounts_length_baseOffset = 0xc0;
            // uint256 constant BatchTransfer1155Params_data_length_baseOffset = 0xe0;
            uint256 constant ConduitBatch1155Transfer_usable_head_size = 0x80;
            uint256 constant ConduitBatch1155Transfer_from_offset = 0x20;
            uint256 constant ConduitBatch1155Transfer_ids_head_offset = 0x60;
            // uint256 constant ConduitBatch1155Transfer_amounts_head_offset = 0x80;
            uint256 constant ConduitBatch1155Transfer_ids_length_offset = 0xa0;
            uint256 constant ConduitBatch1155Transfer_amounts_length_baseOffset = 0xc0;
            // uint256 constant ConduitBatch1155Transfer_calldata_baseSize = 0xc0;
            // Note: abbreviated version of above constant to adhere to line length limit.
            uint256 constant ConduitBatchTransfer_amounts_head_offset = 0x80;
            uint256 constant Invalid1155BatchTransferEncoding_ptr = 0x00;
            uint256 constant Invalid1155BatchTransferEncoding_length = 0x04;
            uint256 constant Invalid1155BatchTransferEncoding_selector = (
                0xeba2084c00000000000000000000000000000000000000000000000000000000
            );
            uint256 constant ERC1155BatchTransferGenericFailure_error_signature = (
                0xafc445e200000000000000000000000000000000000000000000000000000000
            );
            uint256 constant ERC1155BatchTransferGenericFailure_token_ptr = 0x04;
            uint256 constant ERC1155BatchTransferGenericFailure_ids_offset = 0xc0;
            /*
             *  error BadReturnValueFromERC20OnTransfer(
             *      address token, address from, address to, uint256 amount
             *  )
             *    - Defined in TokenTransferrerErrors.sol
             *  Memory layout:
             *    - 0x00: Left-padded selector (data begins at 0x1c)
             *    - 0x00: token
             *    - 0x20: from
             *    - 0x40: to
             *    - 0x60: amount
             * Revert buffer is memory[0x1c:0xa0]
             */
            uint256 constant BadReturnValueFromERC20OnTransfer_error_selector = 0x98891923;
            uint256 constant BadReturnValueFromERC20OnTransfer_error_token_ptr = 0x20;
            uint256 constant BadReturnValueFromERC20OnTransfer_error_from_ptr = 0x40;
            uint256 constant BadReturnValueFromERC20OnTransfer_error_to_ptr = 0x60;
            uint256 constant BadReturnValueFromERC20OnTransfer_error_amount_ptr = 0x80;
            uint256 constant BadReturnValueFromERC20OnTransfer_error_length = 0x84;
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.13;
            /**
             * @title ZoneInteractionErrors
             * @author 0age
             * @notice ZoneInteractionErrors contains errors related to zone interaction.
             */
            interface ZoneInteractionErrors {
                /**
                 * @dev Revert with an error when attempting to fill an order that specifies
                 *      a restricted submitter as its order type when not submitted by
                 *      either the offerer or the order's zone or approved as valid by the
                 *      zone in question via a call to `isValidOrder`.
                 *
                 * @param orderHash The order hash for the invalid restricted order.
                 */
                error InvalidRestrictedOrder(bytes32 orderHash);
                /**
                 * @dev Revert with an error when attempting to fill a contract order that
                 *      fails to generate an order successfully, that does not adhere to the
                 *      requirements for minimum spent or maximum received supplied by the
                 *      fulfiller, or that fails the post-execution `ratifyOrder` check..
                 *
                 * @param orderHash The order hash for the invalid contract order.
                 */
                error InvalidContractOrder(bytes32 orderHash);
            }
            

            File 4 of 5: PayableProxy
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.7;
            import { PayableProxyInterface } from "../interfaces/PayableProxyInterface.sol";
            interface IUpgradeBeacon {
                /**
                 * @notice An external view function that returns the implementation.
                 *
                 * @return The address of the implementation.
                 */
                function implementation() external view returns (address);
            }
            /**
             * @title   PayableProxy
             * @author  OpenSea Protocol Team
             * @notice  PayableProxy is a beacon proxy which will immediately return if
             *          called with callvalue. Otherwise, it will delegatecall the beacon
             *          implementation.
             */
            contract PayableProxy is PayableProxyInterface {
                // Address of the beacon.
                address private immutable _beacon;
                constructor(address beacon) payable {
                    // Ensure the origin is an approved deployer.
                    require(
                        (tx.origin == address(0x939C8d89EBC11fA45e576215E2353673AD0bA18A) ||
                            tx.origin ==
                            address(0xe80a65eB7a3018DedA407e621Ef5fb5B416678CA) ||
                            tx.origin ==
                            address(0x86D26897267711ea4b173C8C124a0A73612001da) ||
                            tx.origin ==
                            address(0x3B52ad533687Ce908bA0485ac177C5fb42972962)),
                        "Deployment must originate from an approved deployer."
                    );
                    // Set the initial beacon.
                    _beacon = beacon;
                }
                function initialize(address ownerToSet) external {
                    // Ensure the origin is an approved deployer.
                    require(
                        (tx.origin == address(0x939C8d89EBC11fA45e576215E2353673AD0bA18A) ||
                            tx.origin ==
                            address(0xe80a65eB7a3018DedA407e621Ef5fb5B416678CA) ||
                            tx.origin ==
                            address(0x86D26897267711ea4b173C8C124a0A73612001da) ||
                            tx.origin ==
                            address(0x3B52ad533687Ce908bA0485ac177C5fb42972962)),
                        "Initialize must originate from an approved deployer."
                    );
                    // Get the implementation address from the provided beacon.
                    address implementation = IUpgradeBeacon(_beacon).implementation();
                    // Create the initializationCalldata from the provided parameters.
                    bytes memory initializationCalldata = abi.encodeWithSignature(
                        "initialize(address)",
                        ownerToSet
                    );
                    // Delegatecall into the implementation, supplying initialization
                    // calldata.
                    (bool ok, ) = implementation.delegatecall(initializationCalldata);
                    // Revert and include revert data if delegatecall to implementation
                    // reverts.
                    if (!ok) {
                        assembly {
                            returndatacopy(0, 0, returndatasize())
                            revert(0, returndatasize())
                        }
                    }
                }
                /**
                 * @dev Fallback function that delegates calls to the address returned by
                 *      `_implementation()`. Will run if no other function in the contract
                 *      matches the call data.
                 */
                fallback() external payable override {
                    _fallback();
                }
                /**
                 * @dev Internal fallback function that delegates calls to the address
                 *      returned by `_implementation()`. Will run if no other function
                 *      in the contract matches the call data.
                 */
                function _fallback() internal {
                    // Delegate if call value is zero.
                    if (msg.value == 0) {
                        _delegate(_implementation());
                    }
                }
                /**
                 * @dev Delegates the current call to `implementation`.
                 *
                 * This function does not return to its internal call site, it will
                 * return directly to the external caller.
                 */
                function _delegate(address implementation) internal virtual {
                    assembly {
                        // Copy msg.data. We take full control of memory in this
                        // inline assembly block because it will not return to
                        // Solidity code. We overwrite the Solidity scratch pad
                        // at memory position 0.
                        calldatacopy(0, 0, calldatasize())
                        // Call the implementation.
                        // out and outsize are 0 because we don't know the size yet.
                        let result := delegatecall(
                            gas(),
                            implementation,
                            0,
                            calldatasize(),
                            0,
                            0
                        )
                        // Copy the returned data.
                        returndatacopy(0, 0, returndatasize())
                        switch result
                        // delegatecall returns 0 on error.
                        case 0 {
                            revert(0, returndatasize())
                        }
                        default {
                            return(0, returndatasize())
                        }
                    }
                }
                /**
                 * @dev This function returns the address to which the fallback function
                 *      should delegate.
                 */
                function _implementation() internal view returns (address) {
                    return IUpgradeBeacon(_beacon).implementation();
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.7;
            /**
             * @title   PayableProxyInterface
             * @author  OpenSea Protocol Team
             * @notice  PayableProxyInterface contains all external function interfaces
             *          for the payable proxy.
             */
            interface PayableProxyInterface {
                /**
                 * @dev Fallback function that delegates calls to the address returned by
                 *      `_implementation()`. Will run if no other function in the contract
                 *      matches the call data.
                 */
                fallback() external payable;
            }
            

            File 5 of 5: Conduit
            // SPDX-License-Identifier: MIT
            pragma solidity >=0.8.7;
            import { ConduitInterface } from "../interfaces/ConduitInterface.sol";
            import { ConduitItemType } from "./lib/ConduitEnums.sol";
            import { TokenTransferrer } from "../lib/TokenTransferrer.sol";
            // prettier-ignore
            import {
                ConduitTransfer,
                ConduitBatch1155Transfer
            } from "./lib/ConduitStructs.sol";
            import "./lib/ConduitConstants.sol";
            /**
             * @title Conduit
             * @author 0age
             * @notice This contract serves as an originator for "proxied" transfers. Each
             *         conduit is deployed and controlled by a "conduit controller" that can
             *         add and remove "channels" or contracts that can instruct the conduit
             *         to transfer approved ERC20/721/1155 tokens. *IMPORTANT NOTE: each
             *         conduit has an owner that can arbitrarily add or remove channels, and
             *         a malicious or negligent owner can add a channel that allows for any
             *         approved ERC20/721/1155 tokens to be taken immediately — be extremely
             *         cautious with what conduits you give token approvals to!*
             */
            contract Conduit is ConduitInterface, TokenTransferrer {
                // Set deployer as an immutable controller that can update channel statuses.
                address private immutable _controller;
                // Track the status of each channel.
                mapping(address => bool) private _channels;
                /**
                 * @notice Ensure that the caller is currently registered as an open channel
                 *         on the conduit.
                 */
                modifier onlyOpenChannel() {
                    // Utilize assembly to access channel storage mapping directly.
                    assembly {
                        // Write the caller to scratch space.
                        mstore(ChannelKey_channel_ptr, caller())
                        // Write the storage slot for _channels to scratch space.
                        mstore(ChannelKey_slot_ptr, _channels.slot)
                        // Derive the position in storage of _channels[msg.sender]
                        // and check if the stored value is zero.
                        if iszero(
                            sload(keccak256(ChannelKey_channel_ptr, ChannelKey_length))
                        ) {
                            // The caller is not an open channel; revert with
                            // ChannelClosed(caller). First, set error signature in memory.
                            mstore(ChannelClosed_error_ptr, ChannelClosed_error_signature)
                            // Next, set the caller as the argument.
                            mstore(ChannelClosed_channel_ptr, caller())
                            // Finally, revert, returning full custom error with argument.
                            revert(ChannelClosed_error_ptr, ChannelClosed_error_length)
                        }
                    }
                    // Continue with function execution.
                    _;
                }
                /**
                 * @notice In the constructor, set the deployer as the controller.
                 */
                constructor() {
                    // Set the deployer as the controller.
                    _controller = msg.sender;
                }
                /**
                 * @notice Execute a sequence of ERC20/721/1155 transfers. Only a caller
                 *         with an open channel can call this function. Note that channels
                 *         are expected to implement reentrancy protection if desired, and
                 *         that cross-channel reentrancy may be possible if the conduit has
                 *         multiple open channels at once. Also note that channels are
                 *         expected to implement checks against transferring any zero-amount
                 *         items if that constraint is desired.
                 *
                 * @param transfers The ERC20/721/1155 transfers to perform.
                 *
                 * @return magicValue A magic value indicating that the transfers were
                 *                    performed successfully.
                 */
                function execute(ConduitTransfer[] calldata transfers)
                    external
                    override
                    onlyOpenChannel
                    returns (bytes4 magicValue)
                {
                    // Retrieve the total number of transfers and place on the stack.
                    uint256 totalStandardTransfers = transfers.length;
                    // Iterate over each transfer.
                    for (uint256 i = 0; i < totalStandardTransfers; ) {
                        // Retrieve the transfer in question and perform the transfer.
                        _transfer(transfers[i]);
                        // Skip overflow check as for loop is indexed starting at zero.
                        unchecked {
                            ++i;
                        }
                    }
                    // Return a magic value indicating that the transfers were performed.
                    magicValue = this.execute.selector;
                }
                /**
                 * @notice Execute a sequence of batch 1155 item transfers. Only a caller
                 *         with an open channel can call this function. Note that channels
                 *         are expected to implement reentrancy protection if desired, and
                 *         that cross-channel reentrancy may be possible if the conduit has
                 *         multiple open channels at once. Also note that channels are
                 *         expected to implement checks against transferring any zero-amount
                 *         items if that constraint is desired.
                 *
                 * @param batchTransfers The 1155 batch item transfers to perform.
                 *
                 * @return magicValue A magic value indicating that the item transfers were
                 *                    performed successfully.
                 */
                function executeBatch1155(
                    ConduitBatch1155Transfer[] calldata batchTransfers
                ) external override onlyOpenChannel returns (bytes4 magicValue) {
                    // Perform 1155 batch transfers. Note that memory should be considered
                    // entirely corrupted from this point forward.
                    _performERC1155BatchTransfers(batchTransfers);
                    // Return a magic value indicating that the transfers were performed.
                    magicValue = this.executeBatch1155.selector;
                }
                /**
                 * @notice Execute a sequence of transfers, both single ERC20/721/1155 item
                 *         transfers as well as batch 1155 item transfers. Only a caller
                 *         with an open channel can call this function. Note that channels
                 *         are expected to implement reentrancy protection if desired, and
                 *         that cross-channel reentrancy may be possible if the conduit has
                 *         multiple open channels at once. Also note that channels are
                 *         expected to implement checks against transferring any zero-amount
                 *         items if that constraint is desired.
                 *
                 * @param standardTransfers The ERC20/721/1155 item transfers to perform.
                 * @param batchTransfers    The 1155 batch item transfers to perform.
                 *
                 * @return magicValue A magic value indicating that the item transfers were
                 *                    performed successfully.
                 */
                function executeWithBatch1155(
                    ConduitTransfer[] calldata standardTransfers,
                    ConduitBatch1155Transfer[] calldata batchTransfers
                ) external override onlyOpenChannel returns (bytes4 magicValue) {
                    // Retrieve the total number of transfers and place on the stack.
                    uint256 totalStandardTransfers = standardTransfers.length;
                    // Iterate over each standard transfer.
                    for (uint256 i = 0; i < totalStandardTransfers; ) {
                        // Retrieve the transfer in question and perform the transfer.
                        _transfer(standardTransfers[i]);
                        // Skip overflow check as for loop is indexed starting at zero.
                        unchecked {
                            ++i;
                        }
                    }
                    // Perform 1155 batch transfers. Note that memory should be considered
                    // entirely corrupted from this point forward aside from the free memory
                    // pointer having the default value.
                    _performERC1155BatchTransfers(batchTransfers);
                    // Return a magic value indicating that the transfers were performed.
                    magicValue = this.executeWithBatch1155.selector;
                }
                /**
                 * @notice Open or close a given channel. Only callable by the controller.
                 *
                 * @param channel The channel to open or close.
                 * @param isOpen  The status of the channel (either open or closed).
                 */
                function updateChannel(address channel, bool isOpen) external override {
                    // Ensure that the caller is the controller of this contract.
                    if (msg.sender != _controller) {
                        revert InvalidController();
                    }
                    // Ensure that the channel does not already have the indicated status.
                    if (_channels[channel] == isOpen) {
                        revert ChannelStatusAlreadySet(channel, isOpen);
                    }
                    // Update the status of the channel.
                    _channels[channel] = isOpen;
                    // Emit a corresponding event.
                    emit ChannelUpdated(channel, isOpen);
                }
                /**
                 * @dev Internal function to transfer a given ERC20/721/1155 item. Note that
                 *      channels are expected to implement checks against transferring any
                 *      zero-amount items if that constraint is desired.
                 *
                 * @param item The ERC20/721/1155 item to transfer.
                 */
                function _transfer(ConduitTransfer calldata item) internal {
                    // Determine the transfer method based on the respective item type.
                    if (item.itemType == ConduitItemType.ERC20) {
                        // Transfer ERC20 token. Note that item.identifier is ignored and
                        // therefore ERC20 transfer items are potentially malleable — this
                        // check should be performed by the calling channel if a constraint
                        // on item malleability is desired.
                        _performERC20Transfer(item.token, item.from, item.to, item.amount);
                    } else if (item.itemType == ConduitItemType.ERC721) {
                        // Ensure that exactly one 721 item is being transferred.
                        if (item.amount != 1) {
                            revert InvalidERC721TransferAmount();
                        }
                        // Transfer ERC721 token.
                        _performERC721Transfer(
                            item.token,
                            item.from,
                            item.to,
                            item.identifier
                        );
                    } else if (item.itemType == ConduitItemType.ERC1155) {
                        // Transfer ERC1155 token.
                        _performERC1155Transfer(
                            item.token,
                            item.from,
                            item.to,
                            item.identifier,
                            item.amount
                        );
                    } else {
                        // Throw with an error.
                        revert InvalidItemType();
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity >=0.8.7;
            // prettier-ignore
            import {
                ConduitTransfer,
                ConduitBatch1155Transfer
            } from "../conduit/lib/ConduitStructs.sol";
            /**
             * @title ConduitInterface
             * @author 0age
             * @notice ConduitInterface contains all external function interfaces, events,
             *         and errors for conduit contracts.
             */
            interface ConduitInterface {
                /**
                 * @dev Revert with an error when attempting to execute transfers using a
                 *      caller that does not have an open channel.
                 */
                error ChannelClosed(address channel);
                /**
                 * @dev Revert with an error when attempting to update a channel to the
                 *      current status of that channel.
                 */
                error ChannelStatusAlreadySet(address channel, bool isOpen);
                /**
                 * @dev Revert with an error when attempting to execute a transfer for an
                 *      item that does not have an ERC20/721/1155 item type.
                 */
                error InvalidItemType();
                /**
                 * @dev Revert with an error when attempting to update the status of a
                 *      channel from a caller that is not the conduit controller.
                 */
                error InvalidController();
                /**
                 * @dev Emit an event whenever a channel is opened or closed.
                 *
                 * @param channel The channel that has been updated.
                 * @param open    A boolean indicating whether the conduit is open or not.
                 */
                event ChannelUpdated(address indexed channel, bool open);
                /**
                 * @notice Execute a sequence of ERC20/721/1155 transfers. Only a caller
                 *         with an open channel can call this function.
                 *
                 * @param transfers The ERC20/721/1155 transfers to perform.
                 *
                 * @return magicValue A magic value indicating that the transfers were
                 *                    performed successfully.
                 */
                function execute(ConduitTransfer[] calldata transfers)
                    external
                    returns (bytes4 magicValue);
                /**
                 * @notice Execute a sequence of batch 1155 transfers. Only a caller with an
                 *         open channel can call this function.
                 *
                 * @param batch1155Transfers The 1155 batch transfers to perform.
                 *
                 * @return magicValue A magic value indicating that the transfers were
                 *                    performed successfully.
                 */
                function executeBatch1155(
                    ConduitBatch1155Transfer[] calldata batch1155Transfers
                ) external returns (bytes4 magicValue);
                /**
                 * @notice Execute a sequence of transfers, both single and batch 1155. Only
                 *         a caller with an open channel can call this function.
                 *
                 * @param standardTransfers  The ERC20/721/1155 transfers to perform.
                 * @param batch1155Transfers The 1155 batch transfers to perform.
                 *
                 * @return magicValue A magic value indicating that the transfers were
                 *                    performed successfully.
                 */
                function executeWithBatch1155(
                    ConduitTransfer[] calldata standardTransfers,
                    ConduitBatch1155Transfer[] calldata batch1155Transfers
                ) external returns (bytes4 magicValue);
                /**
                 * @notice Open or close a given channel. Only callable by the controller.
                 *
                 * @param channel The channel to open or close.
                 * @param isOpen  The status of the channel (either open or closed).
                 */
                function updateChannel(address channel, bool isOpen) external;
            }
            // SPDX-License-Identifier: MIT
            pragma solidity >=0.8.7;
            enum ConduitItemType {
                NATIVE, // unused
                ERC20,
                ERC721,
                ERC1155
            }
            // SPDX-License-Identifier: MIT
            pragma solidity >=0.8.7;
            import "./TokenTransferrerConstants.sol";
            // prettier-ignore
            import {
                TokenTransferrerErrors
            } from "../interfaces/TokenTransferrerErrors.sol";
            import { ConduitBatch1155Transfer } from "../conduit/lib/ConduitStructs.sol";
            /**
             * @title TokenTransferrer
             * @author 0age
             * @custom:coauthor d1ll0n
             * @custom:coauthor transmissions11
             * @notice TokenTransferrer is a library for performing optimized ERC20, ERC721,
             *         ERC1155, and batch ERC1155 transfers, used by both Seaport as well as
             *         by conduits deployed by the ConduitController. Use great caution when
             *         considering these functions for use in other codebases, as there are
             *         significant side effects and edge cases that need to be thoroughly
             *         understood and carefully addressed.
             */
            contract TokenTransferrer is TokenTransferrerErrors {
                /**
                 * @dev Internal function to transfer ERC20 tokens from a given originator
                 *      to a given recipient. Sufficient approvals must be set on the
                 *      contract performing the transfer.
                 *
                 * @param token      The ERC20 token to transfer.
                 * @param from       The originator of the transfer.
                 * @param to         The recipient of the transfer.
                 * @param amount     The amount to transfer.
                 */
                function _performERC20Transfer(
                    address token,
                    address from,
                    address to,
                    uint256 amount
                ) internal {
                    // Utilize assembly to perform an optimized ERC20 token transfer.
                    assembly {
                        // The free memory pointer memory slot will be used when populating
                        // call data for the transfer; read the value and restore it later.
                        let memPointer := mload(FreeMemoryPointerSlot)
                        // Write call data into memory, starting with function selector.
                        mstore(ERC20_transferFrom_sig_ptr, ERC20_transferFrom_signature)
                        mstore(ERC20_transferFrom_from_ptr, from)
                        mstore(ERC20_transferFrom_to_ptr, to)
                        mstore(ERC20_transferFrom_amount_ptr, amount)
                        // Make call & copy up to 32 bytes of return data to scratch space.
                        // Scratch space does not need to be cleared ahead of time, as the
                        // subsequent check will ensure that either at least a full word of
                        // return data is received (in which case it will be overwritten) or
                        // that no data is received (in which case scratch space will be
                        // ignored) on a successful call to the given token.
                        let callStatus := call(
                            gas(),
                            token,
                            0,
                            ERC20_transferFrom_sig_ptr,
                            ERC20_transferFrom_length,
                            0,
                            OneWord
                        )
                        // Determine whether transfer was successful using status & result.
                        let success := and(
                            // Set success to whether the call reverted, if not check it
                            // either returned exactly 1 (can't just be non-zero data), or
                            // had no return data.
                            or(
                                and(eq(mload(0), 1), gt(returndatasize(), 31)),
                                iszero(returndatasize())
                            ),
                            callStatus
                        )
                        // Handle cases where either the transfer failed or no data was
                        // returned. Group these, as most transfers will succeed with data.
                        // Equivalent to `or(iszero(success), iszero(returndatasize()))`
                        // but after it's inverted for JUMPI this expression is cheaper.
                        if iszero(and(success, iszero(iszero(returndatasize())))) {
                            // If the token has no code or the transfer failed: Equivalent
                            // to `or(iszero(success), iszero(extcodesize(token)))` but
                            // after it's inverted for JUMPI this expression is cheaper.
                            if iszero(and(iszero(iszero(extcodesize(token))), success)) {
                                // If the transfer failed:
                                if iszero(success) {
                                    // If it was due to a revert:
                                    if iszero(callStatus) {
                                        // If it returned a message, bubble it up as long as
                                        // sufficient gas remains to do so:
                                        if returndatasize() {
                                            // Ensure that sufficient gas is available to
                                            // copy returndata while expanding memory where
                                            // necessary. Start by computing the word size
                                            // of returndata and allocated memory. Round up
                                            // to the nearest full word.
                                            let returnDataWords := div(
                                                add(returndatasize(), AlmostOneWord),
                                                OneWord
                                            )
                                            // Note: use the free memory pointer in place of
                                            // msize() to work around a Yul warning that
                                            // prevents accessing msize directly when the IR
                                            // pipeline is activated.
                                            let msizeWords := div(memPointer, OneWord)
                                            // Next, compute the cost of the returndatacopy.
                                            let cost := mul(CostPerWord, returnDataWords)
                                            // Then, compute cost of new memory allocation.
                                            if gt(returnDataWords, msizeWords) {
                                                cost := add(
                                                    cost,
                                                    add(
                                                        mul(
                                                            sub(
                                                                returnDataWords,
                                                                msizeWords
                                                            ),
                                                            CostPerWord
                                                        ),
                                                        div(
                                                            sub(
                                                                mul(
                                                                    returnDataWords,
                                                                    returnDataWords
                                                                ),
                                                                mul(msizeWords, msizeWords)
                                                            ),
                                                            MemoryExpansionCoefficient
                                                        )
                                                    )
                                                )
                                            }
                                            // Finally, add a small constant and compare to
                                            // gas remaining; bubble up the revert data if
                                            // enough gas is still available.
                                            if lt(add(cost, ExtraGasBuffer), gas()) {
                                                // Copy returndata to memory; overwrite
                                                // existing memory.
                                                returndatacopy(0, 0, returndatasize())
                                                // Revert, specifying memory region with
                                                // copied returndata.
                                                revert(0, returndatasize())
                                            }
                                        }
                                        // Otherwise revert with a generic error message.
                                        mstore(
                                            TokenTransferGenericFailure_error_sig_ptr,
                                            TokenTransferGenericFailure_error_signature
                                        )
                                        mstore(
                                            TokenTransferGenericFailure_error_token_ptr,
                                            token
                                        )
                                        mstore(
                                            TokenTransferGenericFailure_error_from_ptr,
                                            from
                                        )
                                        mstore(TokenTransferGenericFailure_error_to_ptr, to)
                                        mstore(TokenTransferGenericFailure_error_id_ptr, 0)
                                        mstore(
                                            TokenTransferGenericFailure_error_amount_ptr,
                                            amount
                                        )
                                        revert(
                                            TokenTransferGenericFailure_error_sig_ptr,
                                            TokenTransferGenericFailure_error_length
                                        )
                                    }
                                    // Otherwise revert with a message about the token
                                    // returning false or non-compliant return values.
                                    mstore(
                                        BadReturnValueFromERC20OnTransfer_error_sig_ptr,
                                        BadReturnValueFromERC20OnTransfer_error_signature
                                    )
                                    mstore(
                                        BadReturnValueFromERC20OnTransfer_error_token_ptr,
                                        token
                                    )
                                    mstore(
                                        BadReturnValueFromERC20OnTransfer_error_from_ptr,
                                        from
                                    )
                                    mstore(
                                        BadReturnValueFromERC20OnTransfer_error_to_ptr,
                                        to
                                    )
                                    mstore(
                                        BadReturnValueFromERC20OnTransfer_error_amount_ptr,
                                        amount
                                    )
                                    revert(
                                        BadReturnValueFromERC20OnTransfer_error_sig_ptr,
                                        BadReturnValueFromERC20OnTransfer_error_length
                                    )
                                }
                                // Otherwise, revert with error about token not having code:
                                mstore(NoContract_error_sig_ptr, NoContract_error_signature)
                                mstore(NoContract_error_token_ptr, token)
                                revert(NoContract_error_sig_ptr, NoContract_error_length)
                            }
                            // Otherwise, the token just returned no data despite the call
                            // having succeeded; no need to optimize for this as it's not
                            // technically ERC20 compliant.
                        }
                        // Restore the original free memory pointer.
                        mstore(FreeMemoryPointerSlot, memPointer)
                        // Restore the zero slot to zero.
                        mstore(ZeroSlot, 0)
                    }
                }
                /**
                 * @dev Internal function to transfer an ERC721 token from a given
                 *      originator to a given recipient. Sufficient approvals must be set on
                 *      the contract performing the transfer. Note that this function does
                 *      not check whether the receiver can accept the ERC721 token (i.e. it
                 *      does not use `safeTransferFrom`).
                 *
                 * @param token      The ERC721 token to transfer.
                 * @param from       The originator of the transfer.
                 * @param to         The recipient of the transfer.
                 * @param identifier The tokenId to transfer.
                 */
                function _performERC721Transfer(
                    address token,
                    address from,
                    address to,
                    uint256 identifier
                ) internal {
                    // Utilize assembly to perform an optimized ERC721 token transfer.
                    assembly {
                        // If the token has no code, revert.
                        if iszero(extcodesize(token)) {
                            mstore(NoContract_error_sig_ptr, NoContract_error_signature)
                            mstore(NoContract_error_token_ptr, token)
                            revert(NoContract_error_sig_ptr, NoContract_error_length)
                        }
                        // The free memory pointer memory slot will be used when populating
                        // call data for the transfer; read the value and restore it later.
                        let memPointer := mload(FreeMemoryPointerSlot)
                        // Write call data to memory starting with function selector.
                        mstore(ERC721_transferFrom_sig_ptr, ERC721_transferFrom_signature)
                        mstore(ERC721_transferFrom_from_ptr, from)
                        mstore(ERC721_transferFrom_to_ptr, to)
                        mstore(ERC721_transferFrom_id_ptr, identifier)
                        // Perform the call, ignoring return data.
                        let success := call(
                            gas(),
                            token,
                            0,
                            ERC721_transferFrom_sig_ptr,
                            ERC721_transferFrom_length,
                            0,
                            0
                        )
                        // If the transfer reverted:
                        if iszero(success) {
                            // If it returned a message, bubble it up as long as sufficient
                            // gas remains to do so:
                            if returndatasize() {
                                // Ensure that sufficient gas is available to copy
                                // returndata while expanding memory where necessary. Start
                                // by computing word size of returndata & allocated memory.
                                // Round up to the nearest full word.
                                let returnDataWords := div(
                                    add(returndatasize(), AlmostOneWord),
                                    OneWord
                                )
                                // Note: use the free memory pointer in place of msize() to
                                // work around a Yul warning that prevents accessing msize
                                // directly when the IR pipeline is activated.
                                let msizeWords := div(memPointer, OneWord)
                                // Next, compute the cost of the returndatacopy.
                                let cost := mul(CostPerWord, returnDataWords)
                                // Then, compute cost of new memory allocation.
                                if gt(returnDataWords, msizeWords) {
                                    cost := add(
                                        cost,
                                        add(
                                            mul(
                                                sub(returnDataWords, msizeWords),
                                                CostPerWord
                                            ),
                                            div(
                                                sub(
                                                    mul(returnDataWords, returnDataWords),
                                                    mul(msizeWords, msizeWords)
                                                ),
                                                MemoryExpansionCoefficient
                                            )
                                        )
                                    )
                                }
                                // Finally, add a small constant and compare to gas
                                // remaining; bubble up the revert data if enough gas is
                                // still available.
                                if lt(add(cost, ExtraGasBuffer), gas()) {
                                    // Copy returndata to memory; overwrite existing memory.
                                    returndatacopy(0, 0, returndatasize())
                                    // Revert, giving memory region with copied returndata.
                                    revert(0, returndatasize())
                                }
                            }
                            // Otherwise revert with a generic error message.
                            mstore(
                                TokenTransferGenericFailure_error_sig_ptr,
                                TokenTransferGenericFailure_error_signature
                            )
                            mstore(TokenTransferGenericFailure_error_token_ptr, token)
                            mstore(TokenTransferGenericFailure_error_from_ptr, from)
                            mstore(TokenTransferGenericFailure_error_to_ptr, to)
                            mstore(TokenTransferGenericFailure_error_id_ptr, identifier)
                            mstore(TokenTransferGenericFailure_error_amount_ptr, 1)
                            revert(
                                TokenTransferGenericFailure_error_sig_ptr,
                                TokenTransferGenericFailure_error_length
                            )
                        }
                        // Restore the original free memory pointer.
                        mstore(FreeMemoryPointerSlot, memPointer)
                        // Restore the zero slot to zero.
                        mstore(ZeroSlot, 0)
                    }
                }
                /**
                 * @dev Internal function to transfer ERC1155 tokens from a given
                 *      originator to a given recipient. Sufficient approvals must be set on
                 *      the contract performing the transfer and contract recipients must
                 *      implement the ERC1155TokenReceiver interface to indicate that they
                 *      are willing to accept the transfer.
                 *
                 * @param token      The ERC1155 token to transfer.
                 * @param from       The originator of the transfer.
                 * @param to         The recipient of the transfer.
                 * @param identifier The id to transfer.
                 * @param amount     The amount to transfer.
                 */
                function _performERC1155Transfer(
                    address token,
                    address from,
                    address to,
                    uint256 identifier,
                    uint256 amount
                ) internal {
                    // Utilize assembly to perform an optimized ERC1155 token transfer.
                    assembly {
                        // If the token has no code, revert.
                        if iszero(extcodesize(token)) {
                            mstore(NoContract_error_sig_ptr, NoContract_error_signature)
                            mstore(NoContract_error_token_ptr, token)
                            revert(NoContract_error_sig_ptr, NoContract_error_length)
                        }
                        // The following memory slots will be used when populating call data
                        // for the transfer; read the values and restore them later.
                        let memPointer := mload(FreeMemoryPointerSlot)
                        let slot0x80 := mload(Slot0x80)
                        let slot0xA0 := mload(Slot0xA0)
                        let slot0xC0 := mload(Slot0xC0)
                        // Write call data into memory, beginning with function selector.
                        mstore(
                            ERC1155_safeTransferFrom_sig_ptr,
                            ERC1155_safeTransferFrom_signature
                        )
                        mstore(ERC1155_safeTransferFrom_from_ptr, from)
                        mstore(ERC1155_safeTransferFrom_to_ptr, to)
                        mstore(ERC1155_safeTransferFrom_id_ptr, identifier)
                        mstore(ERC1155_safeTransferFrom_amount_ptr, amount)
                        mstore(
                            ERC1155_safeTransferFrom_data_offset_ptr,
                            ERC1155_safeTransferFrom_data_length_offset
                        )
                        mstore(ERC1155_safeTransferFrom_data_length_ptr, 0)
                        // Perform the call, ignoring return data.
                        let success := call(
                            gas(),
                            token,
                            0,
                            ERC1155_safeTransferFrom_sig_ptr,
                            ERC1155_safeTransferFrom_length,
                            0,
                            0
                        )
                        // If the transfer reverted:
                        if iszero(success) {
                            // If it returned a message, bubble it up as long as sufficient
                            // gas remains to do so:
                            if returndatasize() {
                                // Ensure that sufficient gas is available to copy
                                // returndata while expanding memory where necessary. Start
                                // by computing word size of returndata & allocated memory.
                                // Round up to the nearest full word.
                                let returnDataWords := div(
                                    add(returndatasize(), AlmostOneWord),
                                    OneWord
                                )
                                // Note: use the free memory pointer in place of msize() to
                                // work around a Yul warning that prevents accessing msize
                                // directly when the IR pipeline is activated.
                                let msizeWords := div(memPointer, OneWord)
                                // Next, compute the cost of the returndatacopy.
                                let cost := mul(CostPerWord, returnDataWords)
                                // Then, compute cost of new memory allocation.
                                if gt(returnDataWords, msizeWords) {
                                    cost := add(
                                        cost,
                                        add(
                                            mul(
                                                sub(returnDataWords, msizeWords),
                                                CostPerWord
                                            ),
                                            div(
                                                sub(
                                                    mul(returnDataWords, returnDataWords),
                                                    mul(msizeWords, msizeWords)
                                                ),
                                                MemoryExpansionCoefficient
                                            )
                                        )
                                    )
                                }
                                // Finally, add a small constant and compare to gas
                                // remaining; bubble up the revert data if enough gas is
                                // still available.
                                if lt(add(cost, ExtraGasBuffer), gas()) {
                                    // Copy returndata to memory; overwrite existing memory.
                                    returndatacopy(0, 0, returndatasize())
                                    // Revert, giving memory region with copied returndata.
                                    revert(0, returndatasize())
                                }
                            }
                            // Otherwise revert with a generic error message.
                            mstore(
                                TokenTransferGenericFailure_error_sig_ptr,
                                TokenTransferGenericFailure_error_signature
                            )
                            mstore(TokenTransferGenericFailure_error_token_ptr, token)
                            mstore(TokenTransferGenericFailure_error_from_ptr, from)
                            mstore(TokenTransferGenericFailure_error_to_ptr, to)
                            mstore(TokenTransferGenericFailure_error_id_ptr, identifier)
                            mstore(TokenTransferGenericFailure_error_amount_ptr, amount)
                            revert(
                                TokenTransferGenericFailure_error_sig_ptr,
                                TokenTransferGenericFailure_error_length
                            )
                        }
                        mstore(Slot0x80, slot0x80) // Restore slot 0x80.
                        mstore(Slot0xA0, slot0xA0) // Restore slot 0xA0.
                        mstore(Slot0xC0, slot0xC0) // Restore slot 0xC0.
                        // Restore the original free memory pointer.
                        mstore(FreeMemoryPointerSlot, memPointer)
                        // Restore the zero slot to zero.
                        mstore(ZeroSlot, 0)
                    }
                }
                /**
                 * @dev Internal function to transfer ERC1155 tokens from a given
                 *      originator to a given recipient. Sufficient approvals must be set on
                 *      the contract performing the transfer and contract recipients must
                 *      implement the ERC1155TokenReceiver interface to indicate that they
                 *      are willing to accept the transfer. NOTE: this function is not
                 *      memory-safe; it will overwrite existing memory, restore the free
                 *      memory pointer to the default value, and overwrite the zero slot.
                 *      This function should only be called once memory is no longer
                 *      required and when uninitialized arrays are not utilized, and memory
                 *      should be considered fully corrupted (aside from the existence of a
                 *      default-value free memory pointer) after calling this function.
                 *
                 * @param batchTransfers The group of 1155 batch transfers to perform.
                 */
                function _performERC1155BatchTransfers(
                    ConduitBatch1155Transfer[] calldata batchTransfers
                ) internal {
                    // Utilize assembly to perform optimized batch 1155 transfers.
                    assembly {
                        let len := batchTransfers.length
                        // Pointer to first head in the array, which is offset to the struct
                        // at each index. This gets incremented after each loop to avoid
                        // multiplying by 32 to get the offset for each element.
                        let nextElementHeadPtr := batchTransfers.offset
                        // Pointer to beginning of the head of the array. This is the
                        // reference position each offset references. It's held static to
                        // let each loop calculate the data position for an element.
                        let arrayHeadPtr := nextElementHeadPtr
                        // Write the function selector, which will be reused for each call:
                        // safeBatchTransferFrom(address,address,uint256[],uint256[],bytes)
                        mstore(
                            ConduitBatch1155Transfer_from_offset,
                            ERC1155_safeBatchTransferFrom_signature
                        )
                        // Iterate over each batch transfer.
                        for {
                            let i := 0
                        } lt(i, len) {
                            i := add(i, 1)
                        } {
                            // Read the offset to the beginning of the element and add
                            // it to pointer to the beginning of the array head to get
                            // the absolute position of the element in calldata.
                            let elementPtr := add(
                                arrayHeadPtr,
                                calldataload(nextElementHeadPtr)
                            )
                            // Retrieve the token from calldata.
                            let token := calldataload(elementPtr)
                            // If the token has no code, revert.
                            if iszero(extcodesize(token)) {
                                mstore(NoContract_error_sig_ptr, NoContract_error_signature)
                                mstore(NoContract_error_token_ptr, token)
                                revert(NoContract_error_sig_ptr, NoContract_error_length)
                            }
                            // Get the total number of supplied ids.
                            let idsLength := calldataload(
                                add(elementPtr, ConduitBatch1155Transfer_ids_length_offset)
                            )
                            // Determine the expected offset for the amounts array.
                            let expectedAmountsOffset := add(
                                ConduitBatch1155Transfer_amounts_length_baseOffset,
                                mul(idsLength, OneWord)
                            )
                            // Validate struct encoding.
                            let invalidEncoding := iszero(
                                and(
                                    // ids.length == amounts.length
                                    eq(
                                        idsLength,
                                        calldataload(add(elementPtr, expectedAmountsOffset))
                                    ),
                                    and(
                                        // ids_offset == 0xa0
                                        eq(
                                            calldataload(
                                                add(
                                                    elementPtr,
                                                    ConduitBatch1155Transfer_ids_head_offset
                                                )
                                            ),
                                            ConduitBatch1155Transfer_ids_length_offset
                                        ),
                                        // amounts_offset == 0xc0 + ids.length*32
                                        eq(
                                            calldataload(
                                                add(
                                                    elementPtr,
                                                    ConduitBatchTransfer_amounts_head_offset
                                                )
                                            ),
                                            expectedAmountsOffset
                                        )
                                    )
                                )
                            )
                            // Revert with an error if the encoding is not valid.
                            if invalidEncoding {
                                mstore(
                                    Invalid1155BatchTransferEncoding_ptr,
                                    Invalid1155BatchTransferEncoding_selector
                                )
                                revert(
                                    Invalid1155BatchTransferEncoding_ptr,
                                    Invalid1155BatchTransferEncoding_length
                                )
                            }
                            // Update the offset position for the next loop
                            nextElementHeadPtr := add(nextElementHeadPtr, OneWord)
                            // Copy the first section of calldata (before dynamic values).
                            calldatacopy(
                                BatchTransfer1155Params_ptr,
                                add(elementPtr, ConduitBatch1155Transfer_from_offset),
                                ConduitBatch1155Transfer_usable_head_size
                            )
                            // Determine size of calldata required for ids and amounts. Note
                            // that the size includes both lengths as well as the data.
                            let idsAndAmountsSize := add(TwoWords, mul(idsLength, TwoWords))
                            // Update the offset for the data array in memory.
                            mstore(
                                BatchTransfer1155Params_data_head_ptr,
                                add(
                                    BatchTransfer1155Params_ids_length_offset,
                                    idsAndAmountsSize
                                )
                            )
                            // Set the length of the data array in memory to zero.
                            mstore(
                                add(
                                    BatchTransfer1155Params_data_length_basePtr,
                                    idsAndAmountsSize
                                ),
                                0
                            )
                            // Determine the total calldata size for the call to transfer.
                            let transferDataSize := add(
                                BatchTransfer1155Params_calldata_baseSize,
                                idsAndAmountsSize
                            )
                            // Copy second section of calldata (including dynamic values).
                            calldatacopy(
                                BatchTransfer1155Params_ids_length_ptr,
                                add(elementPtr, ConduitBatch1155Transfer_ids_length_offset),
                                idsAndAmountsSize
                            )
                            // Perform the call to transfer 1155 tokens.
                            let success := call(
                                gas(),
                                token,
                                0,
                                ConduitBatch1155Transfer_from_offset, // Data portion start.
                                transferDataSize, // Location of the length of callData.
                                0,
                                0
                            )
                            // If the transfer reverted:
                            if iszero(success) {
                                // If it returned a message, bubble it up as long as
                                // sufficient gas remains to do so:
                                if returndatasize() {
                                    // Ensure that sufficient gas is available to copy
                                    // returndata while expanding memory where necessary.
                                    // Start by computing word size of returndata and
                                    // allocated memory. Round up to the nearest full word.
                                    let returnDataWords := div(
                                        add(returndatasize(), AlmostOneWord),
                                        OneWord
                                    )
                                    // Note: use transferDataSize in place of msize() to
                                    // work around a Yul warning that prevents accessing
                                    // msize directly when the IR pipeline is activated.
                                    // The free memory pointer is not used here because
                                    // this function does almost all memory management
                                    // manually and does not update it, and transferDataSize
                                    // should be the largest memory value used (unless a
                                    // previous batch was larger).
                                    let msizeWords := div(transferDataSize, OneWord)
                                    // Next, compute the cost of the returndatacopy.
                                    let cost := mul(CostPerWord, returnDataWords)
                                    // Then, compute cost of new memory allocation.
                                    if gt(returnDataWords, msizeWords) {
                                        cost := add(
                                            cost,
                                            add(
                                                mul(
                                                    sub(returnDataWords, msizeWords),
                                                    CostPerWord
                                                ),
                                                div(
                                                    sub(
                                                        mul(
                                                            returnDataWords,
                                                            returnDataWords
                                                        ),
                                                        mul(msizeWords, msizeWords)
                                                    ),
                                                    MemoryExpansionCoefficient
                                                )
                                            )
                                        )
                                    }
                                    // Finally, add a small constant and compare to gas
                                    // remaining; bubble up the revert data if enough gas is
                                    // still available.
                                    if lt(add(cost, ExtraGasBuffer), gas()) {
                                        // Copy returndata to memory; overwrite existing.
                                        returndatacopy(0, 0, returndatasize())
                                        // Revert with memory region containing returndata.
                                        revert(0, returndatasize())
                                    }
                                }
                                // Set the error signature.
                                mstore(
                                    0,
                                    ERC1155BatchTransferGenericFailure_error_signature
                                )
                                // Write the token.
                                mstore(ERC1155BatchTransferGenericFailure_token_ptr, token)
                                // Increase the offset to ids by 32.
                                mstore(
                                    BatchTransfer1155Params_ids_head_ptr,
                                    ERC1155BatchTransferGenericFailure_ids_offset
                                )
                                // Increase the offset to amounts by 32.
                                mstore(
                                    BatchTransfer1155Params_amounts_head_ptr,
                                    add(
                                        OneWord,
                                        mload(BatchTransfer1155Params_amounts_head_ptr)
                                    )
                                )
                                // Return modified region. The total size stays the same as
                                // `token` uses the same number of bytes as `data.length`.
                                revert(0, transferDataSize)
                            }
                        }
                        // Reset the free memory pointer to the default value; memory must
                        // be assumed to be dirtied and not reused from this point forward.
                        // Also note that the zero slot is not reset to zero, meaning empty
                        // arrays cannot be safely created or utilized until it is restored.
                        mstore(FreeMemoryPointerSlot, DefaultFreeMemoryPointer)
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity >=0.8.7;
            import { ConduitItemType } from "./ConduitEnums.sol";
            struct ConduitTransfer {
                ConduitItemType itemType;
                address token;
                address from;
                address to;
                uint256 identifier;
                uint256 amount;
            }
            struct ConduitBatch1155Transfer {
                address token;
                address from;
                address to;
                uint256[] ids;
                uint256[] amounts;
            }
            // SPDX-License-Identifier: MIT
            pragma solidity >=0.8.7;
            // error ChannelClosed(address channel)
            uint256 constant ChannelClosed_error_signature = (
                0x93daadf200000000000000000000000000000000000000000000000000000000
            );
            uint256 constant ChannelClosed_error_ptr = 0x00;
            uint256 constant ChannelClosed_channel_ptr = 0x4;
            uint256 constant ChannelClosed_error_length = 0x24;
            // For the mapping:
            // mapping(address => bool) channels
            // The position in storage for a particular account is:
            // keccak256(abi.encode(account, channels.slot))
            uint256 constant ChannelKey_channel_ptr = 0x00;
            uint256 constant ChannelKey_slot_ptr = 0x20;
            uint256 constant ChannelKey_length = 0x40;
            // SPDX-License-Identifier: MIT
            pragma solidity >=0.8.7;
            /*
             * -------------------------- Disambiguation & Other Notes ---------------------
             *    - The term "head" is used as it is in the documentation for ABI encoding,
             *      but only in reference to dynamic types, i.e. it always refers to the
             *      offset or pointer to the body of a dynamic type. In calldata, the head
             *      is always an offset (relative to the parent object), while in memory,
             *      the head is always the pointer to the body. More information found here:
             *      https://docs.soliditylang.org/en/v0.8.14/abi-spec.html#argument-encoding
             *        - Note that the length of an array is separate from and precedes the
             *          head of the array.
             *
             *    - The term "body" is used in place of the term "head" used in the ABI
             *      documentation. It refers to the start of the data for a dynamic type,
             *      e.g. the first word of a struct or the first word of the first element
             *      in an array.
             *
             *    - The term "pointer" is used to describe the absolute position of a value
             *      and never an offset relative to another value.
             *        - The suffix "_ptr" refers to a memory pointer.
             *        - The suffix "_cdPtr" refers to a calldata pointer.
             *
             *    - The term "offset" is used to describe the position of a value relative
             *      to some parent value. For example, OrderParameters_conduit_offset is the
             *      offset to the "conduit" value in the OrderParameters struct relative to
             *      the start of the body.
             *        - Note: Offsets are used to derive pointers.
             *
             *    - Some structs have pointers defined for all of their fields in this file.
             *      Lines which are commented out are fields that are not used in the
             *      codebase but have been left in for readability.
             */
            uint256 constant AlmostOneWord = 0x1f;
            uint256 constant OneWord = 0x20;
            uint256 constant TwoWords = 0x40;
            uint256 constant ThreeWords = 0x60;
            uint256 constant FreeMemoryPointerSlot = 0x40;
            uint256 constant ZeroSlot = 0x60;
            uint256 constant DefaultFreeMemoryPointer = 0x80;
            uint256 constant Slot0x80 = 0x80;
            uint256 constant Slot0xA0 = 0xa0;
            uint256 constant Slot0xC0 = 0xc0;
            // abi.encodeWithSignature("transferFrom(address,address,uint256)")
            uint256 constant ERC20_transferFrom_signature = (
                0x23b872dd00000000000000000000000000000000000000000000000000000000
            );
            uint256 constant ERC20_transferFrom_sig_ptr = 0x0;
            uint256 constant ERC20_transferFrom_from_ptr = 0x04;
            uint256 constant ERC20_transferFrom_to_ptr = 0x24;
            uint256 constant ERC20_transferFrom_amount_ptr = 0x44;
            uint256 constant ERC20_transferFrom_length = 0x64; // 4 + 32 * 3 == 100
            // abi.encodeWithSignature(
            //     "safeTransferFrom(address,address,uint256,uint256,bytes)"
            // )
            uint256 constant ERC1155_safeTransferFrom_signature = (
                0xf242432a00000000000000000000000000000000000000000000000000000000
            );
            uint256 constant ERC1155_safeTransferFrom_sig_ptr = 0x0;
            uint256 constant ERC1155_safeTransferFrom_from_ptr = 0x04;
            uint256 constant ERC1155_safeTransferFrom_to_ptr = 0x24;
            uint256 constant ERC1155_safeTransferFrom_id_ptr = 0x44;
            uint256 constant ERC1155_safeTransferFrom_amount_ptr = 0x64;
            uint256 constant ERC1155_safeTransferFrom_data_offset_ptr = 0x84;
            uint256 constant ERC1155_safeTransferFrom_data_length_ptr = 0xa4;
            uint256 constant ERC1155_safeTransferFrom_length = 0xc4; // 4 + 32 * 6 == 196
            uint256 constant ERC1155_safeTransferFrom_data_length_offset = 0xa0;
            // abi.encodeWithSignature(
            //     "safeBatchTransferFrom(address,address,uint256[],uint256[],bytes)"
            // )
            uint256 constant ERC1155_safeBatchTransferFrom_signature = (
                0x2eb2c2d600000000000000000000000000000000000000000000000000000000
            );
            bytes4 constant ERC1155_safeBatchTransferFrom_selector = bytes4(
                bytes32(ERC1155_safeBatchTransferFrom_signature)
            );
            uint256 constant ERC721_transferFrom_signature = ERC20_transferFrom_signature;
            uint256 constant ERC721_transferFrom_sig_ptr = 0x0;
            uint256 constant ERC721_transferFrom_from_ptr = 0x04;
            uint256 constant ERC721_transferFrom_to_ptr = 0x24;
            uint256 constant ERC721_transferFrom_id_ptr = 0x44;
            uint256 constant ERC721_transferFrom_length = 0x64; // 4 + 32 * 3 == 100
            // abi.encodeWithSignature("NoContract(address)")
            uint256 constant NoContract_error_signature = (
                0x5f15d67200000000000000000000000000000000000000000000000000000000
            );
            uint256 constant NoContract_error_sig_ptr = 0x0;
            uint256 constant NoContract_error_token_ptr = 0x4;
            uint256 constant NoContract_error_length = 0x24; // 4 + 32 == 36
            // abi.encodeWithSignature(
            //     "TokenTransferGenericFailure(address,address,address,uint256,uint256)"
            // )
            uint256 constant TokenTransferGenericFailure_error_signature = (
                0xf486bc8700000000000000000000000000000000000000000000000000000000
            );
            uint256 constant TokenTransferGenericFailure_error_sig_ptr = 0x0;
            uint256 constant TokenTransferGenericFailure_error_token_ptr = 0x4;
            uint256 constant TokenTransferGenericFailure_error_from_ptr = 0x24;
            uint256 constant TokenTransferGenericFailure_error_to_ptr = 0x44;
            uint256 constant TokenTransferGenericFailure_error_id_ptr = 0x64;
            uint256 constant TokenTransferGenericFailure_error_amount_ptr = 0x84;
            // 4 + 32 * 5 == 164
            uint256 constant TokenTransferGenericFailure_error_length = 0xa4;
            // abi.encodeWithSignature(
            //     "BadReturnValueFromERC20OnTransfer(address,address,address,uint256)"
            // )
            uint256 constant BadReturnValueFromERC20OnTransfer_error_signature = (
                0x9889192300000000000000000000000000000000000000000000000000000000
            );
            uint256 constant BadReturnValueFromERC20OnTransfer_error_sig_ptr = 0x0;
            uint256 constant BadReturnValueFromERC20OnTransfer_error_token_ptr = 0x4;
            uint256 constant BadReturnValueFromERC20OnTransfer_error_from_ptr = 0x24;
            uint256 constant BadReturnValueFromERC20OnTransfer_error_to_ptr = 0x44;
            uint256 constant BadReturnValueFromERC20OnTransfer_error_amount_ptr = 0x64;
            // 4 + 32 * 4 == 132
            uint256 constant BadReturnValueFromERC20OnTransfer_error_length = 0x84;
            uint256 constant ExtraGasBuffer = 0x20;
            uint256 constant CostPerWord = 3;
            uint256 constant MemoryExpansionCoefficient = 0x200;
            // Values are offset by 32 bytes in order to write the token to the beginning
            // in the event of a revert
            uint256 constant BatchTransfer1155Params_ptr = 0x24;
            uint256 constant BatchTransfer1155Params_ids_head_ptr = 0x64;
            uint256 constant BatchTransfer1155Params_amounts_head_ptr = 0x84;
            uint256 constant BatchTransfer1155Params_data_head_ptr = 0xa4;
            uint256 constant BatchTransfer1155Params_data_length_basePtr = 0xc4;
            uint256 constant BatchTransfer1155Params_calldata_baseSize = 0xc4;
            uint256 constant BatchTransfer1155Params_ids_length_ptr = 0xc4;
            uint256 constant BatchTransfer1155Params_ids_length_offset = 0xa0;
            uint256 constant BatchTransfer1155Params_amounts_length_baseOffset = 0xc0;
            uint256 constant BatchTransfer1155Params_data_length_baseOffset = 0xe0;
            uint256 constant ConduitBatch1155Transfer_usable_head_size = 0x80;
            uint256 constant ConduitBatch1155Transfer_from_offset = 0x20;
            uint256 constant ConduitBatch1155Transfer_ids_head_offset = 0x60;
            uint256 constant ConduitBatch1155Transfer_amounts_head_offset = 0x80;
            uint256 constant ConduitBatch1155Transfer_ids_length_offset = 0xa0;
            uint256 constant ConduitBatch1155Transfer_amounts_length_baseOffset = 0xc0;
            uint256 constant ConduitBatch1155Transfer_calldata_baseSize = 0xc0;
            // Note: abbreviated version of above constant to adhere to line length limit.
            uint256 constant ConduitBatchTransfer_amounts_head_offset = 0x80;
            uint256 constant Invalid1155BatchTransferEncoding_ptr = 0x00;
            uint256 constant Invalid1155BatchTransferEncoding_length = 0x04;
            uint256 constant Invalid1155BatchTransferEncoding_selector = (
                0xeba2084c00000000000000000000000000000000000000000000000000000000
            );
            uint256 constant ERC1155BatchTransferGenericFailure_error_signature = (
                0xafc445e200000000000000000000000000000000000000000000000000000000
            );
            uint256 constant ERC1155BatchTransferGenericFailure_token_ptr = 0x04;
            uint256 constant ERC1155BatchTransferGenericFailure_ids_offset = 0xc0;
            // SPDX-License-Identifier: MIT
            pragma solidity >=0.8.7;
            /**
             * @title TokenTransferrerErrors
             */
            interface TokenTransferrerErrors {
                /**
                 * @dev Revert with an error when an ERC721 transfer with amount other than
                 *      one is attempted.
                 */
                error InvalidERC721TransferAmount();
                /**
                 * @dev Revert with an error when attempting to fulfill an order where an
                 *      item has an amount of zero.
                 */
                error MissingItemAmount();
                /**
                 * @dev Revert with an error when attempting to fulfill an order where an
                 *      item has unused parameters. This includes both the token and the
                 *      identifier parameters for native transfers as well as the identifier
                 *      parameter for ERC20 transfers. Note that the conduit does not
                 *      perform this check, leaving it up to the calling channel to enforce
                 *      when desired.
                 */
                error UnusedItemParameters();
                /**
                 * @dev Revert with an error when an ERC20, ERC721, or ERC1155 token
                 *      transfer reverts.
                 *
                 * @param token      The token for which the transfer was attempted.
                 * @param from       The source of the attempted transfer.
                 * @param to         The recipient of the attempted transfer.
                 * @param identifier The identifier for the attempted transfer.
                 * @param amount     The amount for the attempted transfer.
                 */
                error TokenTransferGenericFailure(
                    address token,
                    address from,
                    address to,
                    uint256 identifier,
                    uint256 amount
                );
                /**
                 * @dev Revert with an error when a batch ERC1155 token transfer reverts.
                 *
                 * @param token       The token for which the transfer was attempted.
                 * @param from        The source of the attempted transfer.
                 * @param to          The recipient of the attempted transfer.
                 * @param identifiers The identifiers for the attempted transfer.
                 * @param amounts     The amounts for the attempted transfer.
                 */
                error ERC1155BatchTransferGenericFailure(
                    address token,
                    address from,
                    address to,
                    uint256[] identifiers,
                    uint256[] amounts
                );
                /**
                 * @dev Revert with an error when an ERC20 token transfer returns a falsey
                 *      value.
                 *
                 * @param token      The token for which the ERC20 transfer was attempted.
                 * @param from       The source of the attempted ERC20 transfer.
                 * @param to         The recipient of the attempted ERC20 transfer.
                 * @param amount     The amount for the attempted ERC20 transfer.
                 */
                error BadReturnValueFromERC20OnTransfer(
                    address token,
                    address from,
                    address to,
                    uint256 amount
                );
                /**
                 * @dev Revert with an error when an account being called as an assumed
                 *      contract does not have code and returns no data.
                 *
                 * @param account The account that should contain code.
                 */
                error NoContract(address account);
                /**
                 * @dev Revert with an error when attempting to execute an 1155 batch
                 *      transfer using calldata not produced by default ABI encoding or with
                 *      different lengths for ids and amounts arrays.
                 */
                error Invalid1155BatchTransferEncoding();
            }